
1

HIGH AVAILABILITY TELEMATIC MANAGEMENT

SYSTEM

Tiago Dias
1
, Jorge Lopes

1
, Gonçalo Abreu

2
, Eduardo Lopes

3

1: Brisa Auto-estradas de Portugal

Quinta da Torre da Aguilha, 2875-599 São Domingos de Rana, Portugal

e-mail: {tiago.dias, jlopes}@brisa.pt, web: http://www.brisa.pt

2: MakeWise, Engenharia de Sistemas de Informação

Rua Dr. Francisco Sá Carneiro nº. 4 R/C Esq. 2500-206 Caldas da Rainha
e-mail: goncalo.abreu@make.com.pt, web: http://www.make.com.pt

3: Armis, Sistemas de Informação
Rua Eugémio de Castro, nº 248, Esc. 144, 4100-225 Porto, Portugal

e-mail:eduardo.lopes@armis.pt, web: http://www.armis.pt

ABSTRACT
An efficient use of ITS resources depends on the information and communications

architecture that enables the optimal use of technology, information and, increasingly,

services, available across the variety of ITS applications and systems. This is especially true

for quality of service requirements, namely availability.

The current article focuses on architectural concerns in the development and deployment of

the VMS operation component of Traffic Atlas. This component is cross-cutting in regards to

the multi-layer service oriented architecture of Traffic Atlas; in order to simplify our approach

a VMS-centric approach is taken at each layer.

KEYWORDS: Telematics, High Availability Solutions, ITSIBus, Service Oriented

Architectures, Traffic Management

1. INTRODUCTION

The rapid evolution of technologies, competitive market and lack of standardization has given

rise to the creation of products which generally prohibit the integration of legacy systems

without significant reengineering [1]. Because of this, the various systems which together

provide overall traffic and toll plaza management are normally operated independently from

dedicated workstations. This however inhibits the operator’s decision-making abilities,

especially in real time situations, impacting on the end service level provided.

In their development of Traffic Atlas, Brisa launched a process whereby data from disparate

systems is collected, harmonised, aggregated and enhanced to form a single, optimised

interface. The innovative aspect of Traffic Atlas lies in achievement of the real time

integration of fragmented data streams sourced from fundamentally differing systems

possessing varied operational functionalities. The challenge was heightened by the diversity

of these systems in functionality, application (including CCTV cameras, emergency systems,

weather stations and toll plaza management systems) and generation. The Traffic Atlas

system represents a novel application of various ICTs (information and communication

technologies) which build a common platform middleware from which the transmission,

receipt and recording of data, voice and video information is integrated and displayed in a

standard format on a map-based user interface.

2

2. THE TRAFFIC ATLAS SOFTWARE PRODUCT LINE

Brisa Auto-Estradas de Portugal, founded in 1972, is the largest Portuguese motorway

operator and an important player in the traffic sector in Europe. Brisa currently operates, on a

concession basis, a network of 11 motorways constituting the main Portuguese road links,

connecting the country from north to south and from east to west. The total length of

motorways in the network is more than 1100km. Brisa owns various companies specialising

in motorway services aimed towards increasing in its own operating efficiency and improving

the quality of the service provided to customers. The company is known internationally for

the deployment of the automatic pass-through toll systems.

Traffic Atlas, shortly named “Atlas”, is a web-based product for motorway operation and

management. It’s designed for use in a wide area of operation-related environments. It has

been developed by Brisa for internal usage and is currently the main working tool for Brisa’s

control room (operations and tolling), maintenance teams, operation managers, external law

forces and call-center.

The central design in Atlas has been that of a software product line. Software product lines

are set to create a managed set of components meeting the general requirements of a market

segment, instead of developing a customer-centric application. This design enables Atlas to

easily adapt to new requirements and configuring solutions for different deployment

scenarios. Support for a different CCTV product or integrating a new kind of road-side

equipment is easily achieved in Atlas due to the pervasive usage of two essential design-

patterns: Provider/Adapter and Observer [2]. The Provider pattern is used where Atlas should

not be bound to a specific external system type; examples are Providers for video-walls,

CCTV or Variable Message Signs (VMS). It works basically by defining an interface that all

providers must follow and, by means of a configuration point, the actual provider is

designated for each element. The Observer pattern is used for decoupling cross-cutting

actions from operational code. This patterns works by defining an event which is triggered

throughout the code, then handlers for this event are registered, each doing a specific task,

some logging actions or alarms to database others to change the state of a particular

equipment or generate a human alert. The events defined by these means are available for

future usage for extensions and don’t require changes to existing code. We are also using a

Hook Operations [3] design-pattern when the action taken outside the main code has to return

an effect to the original code (namely when validations are required). A more generic

approach could be obtained using aspect oriented programming [4]. Our Provider design-

pattern approach is consistent with the higher-level of multi-layer service orientation in Atlas.

Typically for each Atlas component there is a web service that is available for the use of the

interface, internally this service is composed of distinct data-access and logic layers and may

also consume an external service by means of a provider.

The Atlas interface is fully web-based in order to avoid the need for other client-side software

other than a standard web-browser. This feature simplifies deployment of new versions as

well as makes it simpler to provide redundancy and fault-tolerance. Additionally, in order to

achieve a richer and more responsive client interface without requiring specialized client

software, Atlas is making an increasing use of Ajax (Asynchronous Javascript And XML).

When compared with most ITS interface clients (which are GIS based) Atlas has a different

approach for its’ mapping interface. Instead of basic geographic maps, Atlas also provides

cognitive mapping [5] which are schematic representations of a motorway network. The

schematic nature of such representations makes it easy to capture user attention to specific

road-elements, incidences or equipment. Due to its’ simple geometric nature, this approach is

3

also more appropriate for implementation as a web-based interface than a GIS based

approach.

3. TRAFFIC ATLAS SERVICES

In Atlas, each type of road-element, incidence and equipment represented in the mapping

interface has its’ own information and management interface. Each of these maps onto a

different Atlas service component (already mentioned regarding the service orientated

architecture). Currently Atlas is composed of the following core modules: Cognitive Mapping

for interface; Atlas.CCTV; Atlas.VMS; Atlas.Weather; Atlas.Tunnel; Atlas.Traffic Counter.

A different set of Atlas modules offers cross-cutting functionality that is available in context

for the core modules: User access control; CAD (enables online editing of motorway

elements); Logging (stores historic data for business intelligence processing); News service

(delivers multi-channel notifications and manages subscriptions); Video-wall management;

Personal video-wall; Video-server (recording and storage); Operational management matrix

(for communication channels management). Atlas also displays incidences obtained and

managed in an incidence management provider. This provider offers information from and

interaction with incidences (any kind of occurrence on the motorway) and assistance forces

and vehicles.

4. THE ITSIBUS ARCHITECTURE

ITSIBus - Intelligent Transportation Systems Interoperability Bus [6] is a Service-Oriented

Architecture originally developed in ISEL (Instituto Superior de Engenharia de Lisboa). Its

main motivation is to facilitate integrated solutions by defining a technologically independent,

open standard, of an architecture that focuses on systems and services.

Brisa’s toll plazas are managed by a solution that was developed according to ITSIBus and is

in production since 2004. The elected technological binding for this product was the Java

framework, using Jini for the service-oriented implementation.

5. TELEMATIC MANAGEMENT SYSTEM

Telematic Management System (TMS) is the Traffic Atlas solution for the operational

management of different types of telematic equipments. The main objective was to evolve

from having heterogeneous and monolithic systems, unconnected and unaware of each other,

to a comprehensive and integrated solution, based on open standards, to which developers and

vendors can seamlessly contribute. The whole system was developed according to ITSIBus

(open) standards, and currently is managing the entire set of Brisa’s network of VMS

equipments, weather stations and other equipments already in the works (visual incidence

detection agents, etc.).

Physical devices are integrated in the ITSIBus architecture through the use of adapters –

software components which abstract the details of the device’s communication mechanism

and are an ITSIBus service in their full right. These adapters are also a concretization of the

Adapter design pattern seen in [2]. Adapters are developed for each particular VMS

model/vendor. An adapter represents a VMS in the system, providing its functionality through

a service; while originally, this functionality would only be available as a proprietary (lower

level) protocol.

4

The VMSs (in the form of their adapters) are managed by a Telematics Management Server

which constitutes the main orchestrator of the entire system, processing requests from

external systems and performing management and maintenance operations on the VMSs. The

first approach towards the TMS architecture included an instance of an adapter for each VMS,

running in dedicated hardware located on the field, near each VMS.

Diagram 1: Initial TMS Architecture

With the objective of lowering deployment and maintenance costs, adapters running near each

VMS were moved to a central location inside TMS by virtualization as a pool of the adapters

for on-demand usage. The adapters run within the TMS Server context and, every time there

is a need to communicate with a VMS, an adapter is obtained from the pool and properly

configured to establish a connection with the VMS.

Nevertheless, in case a particular VMS solution doesn’t support a networked communications

channel for its interaction protocol, the local adapter solution can coexist in TMS with this

centralized adapter pool solution.

Shifting our view from VMSs to the central system, the entire TMS system is a distributed

application comprised of several sub-systems. Bellow is a schematic representation of the

entire system:

Diagram 2: Current TMS Architecture

As stated before, the TMS Server is responsible for managing several VMSs, implementing

the lower level business logic and processing operational requests from other systems. It

contains a pool of VMS adapters that provide communications with physical VMSs.

TMS Server

VMS Adapter

xxx

xxx xxx

…VMS Adapter VMS Adapter

ITSIBus

TMS WS TMS Server

Adapter Pool

VMS Adapter

VMS Adapter

VMS Adapter

VMS Adapter

ITS-IBus

VMS Adapter

Other

Services

TMS
Broker

Alarm

System

VMS
Registry

5

Amongst other things, the Server is responsible for detecting VMS content changes; placing

default messages in a VMS; periodically adjusting the VMS’s internal clock; monitoring

hardware alarms.

The TMS WS component provides the ITSIBus TMS service functionalities through Web

Services. It is a gateway that non-ITSIBus systems can use to interact with the TMS. Note,

however, that the TMS WS communicates with the TMS through ITSIBus with all the

inherent advantages (service location, redundancy, etc).

The TMS Server starts without absolutely any knowledge about the VMSs present in the

network. One could find all the VMSs through an auto-discovery process, as defined in the

ITSIBus standard, if the adapters were standalone services. However, since the adapter pool

approach had obvious advantages in this particular scenario, a VMS Registry was

implemented with the purpose of supplying information about the VMSs installed in the

network. It is inquired as part of the VMS Server start-up process, supplying it with

information about every VMS, such as: IP Address, Port Number, Default Content Message,

Topology and Supplier (to choose the correct adapter implementation). In order allow adding

new VMSs during TMS runtime, when there is a request regarding a VMS which is yet

unknown, TMS inquires the Registry to obtain the new device details.

The Alarm System, available through Web Services, allows the delivery and notification of

Alarms and Events generated by TMS. The processing and application of higher-level

business rules in response to an event or alarm is handled by Traffic Atlas alarm module. A

Java based JMX monitoring platform will be introduced in future TMS versions to allow for a

more integrated and open solution in regards to the ITSIBus standard.

Given the architecture presented this far we can see that there is no significant impediment for

having several TMS Server instances running at the same time, eventually each managing a

different set of panels. But what about having more than one Server instance managing the

same set of panels, for redundancy purposes? This is also a possible scenario with no

drawbacks other than the fact that each instance would be monitoring the whole set of VMS,

causing unnecessary network traffic since they would be doing repeated work.

To address this issue the TMS Broker was conceived. The Broker provides a lease to a

Server, allowing it to be monitoring the VMSs. The first Server to get the lease is responsible

for monitoring, while subsequent Server instances are denied the lease. Thus, only one Server

can be monitoring at a given time. This Server must periodically renew the lease, otherwise

(ex. if the server goes down) it becomes available again to supply to another Server.

6. VARIABLE MESSAGE SIGNS SUPPORT IN TRAFFIC ATLAS

Atlas works as an intelligence layer over the VMS. It takes a flat panel and turns it into a

powerful operational tool by giving the VMS extended functionalities, both in the operational

and maintenance fields. One of the purposes of the Atlas VMS intelligence layer is to be pro-

activate by providing suggestions for the most effective message according to real-time traffic

and weather situations. During normal VMS operation several actions (ex. messages

signalled, namely human or automatic), alarms and states occur, to provide for auditing and

business analysis every single status and action taken is logged (using the observer design-

pattern from the Atlas framework already presented in section 2). Making use of the provider

design-pattern implementation, also presented back in section 2, and a modular interface,

different types (models/vendors) of VMS can be operated, maintained and provide for

6

analysis with Atlas. To achieve this, besides a client interface for manual VMS interaction,

several layers of applications and services where created.

In order for the Atlas VMS interface to be user-friendly and optimize interactions it centres on

an editable display (depending on state and permissions) of the VMS. State information is

presented when appropriate (ex.: the VMS is not reachable due to maintenance). A near-by

CCTV with coverage of the VMS is available for visual validation if required (usually for

maintenance purposes). CCTV access is one of a set of functionalities that are at a distance of

one click: erasing the current message (sets the default message); accessing the most used

messages for the current VMS or a set of context-based pre-defined messages; even

navigating to other VMS (a list is always present). For integration with the incidence

management platform that accompanies Atlas, or for using on context of alerts regarding

dynamic context changes (namely weather), a message suggestion interface extends the

normal interface. This interface provides the operator with a message suggestion with

computed distance indications and context based text obtained from a rule based system. The

rule based system is quite simple and uses a set of parameters like incidence typification and

location (relative to the VMS). For periodic automated tasks related with VMS, namely a

screen-saver that changes the position of the current time display in inactive VMSs, Atlas

uses an agent implemented as a Windows Service. This agent is also responsible for the

pooling of VMS providers that aren’t synchronous (which isn’t the case of TMS) and for the

evaluation of context conditions that may trigger message suggestion alerts (incidence and

weather related).

Alarm information is available in real-time from TMS at the Alarm System Web Service.

This service uses an event system (observer design-pattern) to take actions on the alarms; one

of the actions is generic and persists this information for future reference. Atlas also offers

interfaces for auditing actions and alarm status (and history). These are generic interfaces

Atlas also provides for other times of equipments (like CCTVs). A specific history interface is

available only for the VMS component in Atlas in order to provide access to the full history

of messages present at a particular VMS (or set of VMSs).

As equipments are deployed to the field (and sometimes removed) Atlas had a requirement of

enabling real-time addition and edition of VMS equipment. This is done through a CAD like

interface which is simple enough for non-specialized usage. This interface enables mapping

the positioning of a VMS in the infrastructure as well as editing the VMS configuration

parameters (addresses, model/vender for adapter selection at run-time, etc.). This enables

testing VMSs right after these are deployed in the field.

7. A MULTIPLATFORM, HIGHLY AVAILABLE ARCHITECTURE

Prior to the integration of TMS in the Traffic Atlas deployment at Brisa, other VMS

management software was used. This provided no service level integration with Atlas
1
 and

had serious availability and reliability issues. TMS was created to overcome these limitations,

the ITSIBus reference architecture was chosen for its proven results in Brisa’s tolling

implementation and because ITSIBus matched the requirements of both VMS integration and

integration with Traffic Atlas.

1
 Integration for these systems had to be done at low levels, namely at the Data layer via database triggers and

table monitorization.

7

7.1 Architecture overview

TMS exposes VMS functionality as a Web Service which is consumed by the Atlas service

layer. Atlas provides for the service dependencies of TMS, namely a VMS registry interface

and an Alarm handler. The following scheme presents these integration points as well as more

detailed system architectures for Atlas and TMS:

Diagram 3: Traffic Atlas systems architecture

Atlas’ own internal architecture was described in generality back in section 2. The previous

scheme details this architecture for the VMS component. The web-based interface consumes a

business logic service layer offered by a Web Service (identified by VMS in the Atlas Web

Services container box); this Web Service is also used by the VMS Agent as it also needs to

make usage of business logic functionalities. Other services also based on this logic may use

the functionalities already exposed by the VMS Web Service or create new Web Services, one

case is a GIS synoptic system used for video-wall display (VDWSinoptic). Additionally the

VMS Registry and TMS Alarm Handler both use the service layer directly as both are

exposing additional VMS related functionality. The TMS system architecture has already

been detailed in section 5. A determining design choice for TMS which enabled the high-

redundant deployment architecture described next was that TMS is not state full and doesn’t

depend on a persistence store, like Atlas does.

7.2 Deployment architecture

The system architectures of both Atlas and TMS we the enablers of a high-redundancy

deployment architecture based on hardware network balancing components. Additionally, as

TMS is implemented in Java, deployment of TMS can be done to different operating systems,

namely Windows and Linux. The deployment in Brisa has two separate logical servers, one

where the Atlas application runs and another server for the TMS Service. For this deployment

it was required that when Atlas might be unavailable the TMS monitoring service would be

stopped and thus VMS would turn off (after some minutes without being pooled), indicating a

malfunction. This way the TMS Broker component was deployed in the same server as Atlas.

8

Each logical server is duplicated in two physical servers (if required, more could be added),

the scheme below presents the four resulting servers along with the network load balancer

components that enable redundancy (these are explained in more detail next).

Diagram 4: Deployment architecture in Brisa

Atlas is active in both web-application servers and invokes TMS through means of a network

load balancer (NLB #3). Network load balancers have two main modes of operation. One of

the modes redirects requests received to a set of redundant servers which share the total load,

this is the case of requests to the TMS Web Service (via NLB#3) and to Atlas (NLB#1). As

the TMS Service is stateless by design and requires no persistence store, all running instances

are available to service Atlas requests but only one is monitoring the VMS pool, the Broker

decides which. The identification of the monitoring service is kept in memory by the Broker

(the icon in the scheme). The TMS service instance responsible for monitoring the VMS

pool is located in srvcco010 and represented with an icon. In case of failure of that service

the Broker will service a request from a different server for the monitorization lease which

will be in charge of monitorization a few moments after the failed service actually failed.

The Broker could not become a single point of failure, so a second mode of NLB operations

was required. In such mode an NLB element redirects requests to the first active service in an

ordered list of services; in case the first preference has failed the list is followed in search of a

working service provider, this is the case of the TMS Broker Service with NLB#2. This way

if a Broker service fails requests for leases (by non-monitoring nodes) and lease renewals (by

the monitoring node) are redirected to a second Broker instance (at srvcco002) and,

depending on the order of the requests monitorization is started at a new node or is renewed

by the currently active monitorization node.

Additionally to supporting our high-availability architecture, both models of network load

balancing allow release deployment without affecting system availability (by deploying

separately at each node).

8. TESTING AND VALIDATION

TMS product development was accompanied by a testing approach based on several tests at

different levels. From the beginning unit tests were applied, each testing a specific and small

system component for a particular functionality. A wider test surface was the focus of

functional and acceptance tests, following all of the more significant development stages. In

9

scenarios where both types of tests had to involve more than one VMS, a simulator was used,

along with a real VMS unit.

Prior to deployment of TMS releases, another test approach was taken. This approach was

composed of a set of certification tests following the functional/acceptance test approach but

this time using only real VMS units. At this stage all of the release functional requirements

were validated. Non-functional requirements (or quality of service requirements) were the

focus of stress tests.

Stress tests were designed to simulate in a short amount of time a number of real operations.

This is done by an extreme increase in the regular frequency these operations have under

predicted or existing (for already deployed functionality) usage scenarios. With this stress

approach longer periods of TMS activity (months to years) were simulated in lower units of

time (hours to days).

9. RELATED WORK

TMS is also suitable for managing other kinds of equipments other than VMS. Weather

stations are one kind of such telematics equipment. CCTV cameras could be another,

although the current CCTV management architecture in Atlas Telematics is totally distributed

between client nodes and sensor nodes (that process the CCTV camera signals) and thus is not

part of TMS. Atlas’s distributed CCTV architecture won't be considered in the following

comparisons as it would require a more elaborate presentation that is out of the scope of this

paper. Even though, works similar in architecture to TMS (with a centralized approach) can

be found for CCTV camera networks. [7] presents a video sensor network in which video

signal processing is done in a load-balanced environment. There is a number N of video

signal processing nodes among which Y video signals are distributed for processing. In [7]

normal values for Y can be as large as 4 times N, as each node can process up to 4 video

signals. [7] focuses mainly on correlation processing between distinct sensor sources in order

to track vehicles as they pass in different sensor ranges. This processing is done on a unique

node, based on high level data resulting from the processing of individual sensor video signals

from the load-balanced signal processing nodes. [7] is clearly an agent system requiring a

level of artificial intelligence capabilities while Atlas.Telematics is limited to more discrete

decision support functionality, namely through rule based sources for alerts or message

suggestions (based on incidence typification which is carried out by a third party, usually

human). In the Atlas Telematics architecture there is no specific need for load distribution

among nodes as one node is capable of supporting enough equipment (in our case all of

Brisa's motorways VMSs). Even though, in case a limit is reached, the broker element can be

adapted to provide leases for equipments instead of leasing the responsibility for the whole

system. This would turn the broker into a very similar component to [7]'s software load

manager. The main focus of [7] is not on high-availability, the architecture presented has a

unique point-of-failure at the correlation processing node and another at the load-balancer. In

order to achieve redundancy, the correlation processing node might be replicated by using a

similar approach to TMS, although there would be some issues as the solution is not stateless

while TMS is. The load-balancer point of failure is also shared by the Atlas Telematics

architecture, only in Atlas Telematics current deployment the load-balancer is a network

hardware element and in [7] it's a software element.

Atlas Telematics provides decision support (through a rule based system) only at a tactical

(local) level. A strategic (regional) level approach is a matter of future work, based on

ongoing regional projects in which Brisa is involved and which have already led to the

adoption of DATEX2 with software support documented in [8]. [9] and [10] present

10

architectures for strategic level approaches where knowledge bases are at the core of a

multilayer (artificial intelligence) agent system. Their general approach is to have a dedicated

agent for each local level and a coordinator that implements the strategic level by validating

local results against each other. At its current stage, Atlas Telematics could provision the

sensor/actuator service level as well as work as the human interface in such decision support

architectures.

10. CONCLUSIONS

This paper has exposed a specification of a conceptualization used to implement an high-

availability solution for traffic and telematic management systems. Here are some conclusions

resulting from the deployment process:

• Efficient use of ITS resources depends on an ICT architecture that enables the efficient

use of technology, information and increasingly, services available across the variety of

ITS applications and systems.

• The use of studied patterns for system design and deployment empowers the solution

efficiency and robustness, essential for critical environments.

• Software product lines and the architectures presented (namely ITSIBus) host the ideal

environment for other types of telematic equipments, this is why ongoing work includes

supporting weather stations in TMS and extending TMS’s functional support for any type

of telematic message devices (namely fuel price panels).

REFERENCES

[1] J. Lopes, J. Gomes, L. Osório, "Open Architecture for Road Tolling and Traffic

Management Services". ITS World Conference 2006, London, 2006.

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software”, pgs. 139 and 293. Addison-Wesley, 1995.

[3] S. Black, “Design Pattern: Hook Operations”. http://www.stevenblack.com/PTN-

HookOperations.asp, July, 2000.

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier,

M., Irwin, J., "Aspect-Oriented Programming". ECOOP, Springer-Verlag, 1997.

[5] J. Lopes, J. Bento, "Cognitive Mapping for ITS Services". ITS World Conference

2005, San Francisco, 2005.

[6] C. Goncalves, B. Antunes, A. Amador, “ITSIBUS: Jini™ and RFID Technologies

Enable Interoperability in an Open, Service-Oriented Architecture for Toll

Management". JavaOne 2005, San Francisco, 2005

[7] G. Kogut, M. Trivedi, "A Wide Area Tracking System for Vision Sensor Networks". 9th

World Congress on ITS, Chicago, October 2002.

[8] C. Costa, T. Fernandes; J. Lopes, “DATEX2.Toolkit - A working example of

DATEX2”. To be presented in ITS in Europe 2007, Aalborg, Denmark, 2007.

[9] J. Hernandez, J. Cuena, M. Molina, "Real-time Traffic Management through

Knowledge-based Models: The TRYS approach". ERUDIT Tutorial on Intelligent

Traffic Management Models, Helsinki, Finland, 1999.

[10] H. Kirschfink, J. Hernandez, M. Boero, "Intelligent Traffic Management Models".

European Symposium on Intelligent Techniques, Aachen, Germany, 2000.

