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Sumário 

Esta dissertação usa a Separação Multi-Dimensional de Assuntos (MDSoC) para estudar a 
composição de software. A composição de software endereça as dificuldades de 
modularização típicas que existem nas abordagens actuais da Engenharia de Software, como 
por exemplo as Orientadas aos Objectos. O  MDSoC oferece o mesmo mecanismo de 
modularização multi-dimensional unificado para todas as fases do ciclo de vida do software. 
Este mecanismo de modularização complementa as abordagens existentes, em vez de as 
substituir. 

Grande parte do trabalho aqui apresentado foca implementações MDSoC limitadas à fase da 
programação. A este tipo de implementações já existentes junta-se o Hyper/Net que 
desenvolvemos de forma a suportar MDSoC no ambiente Microsoft .NET. O Hyper/Net 
baseia-se nos tipos parciais (do inglês partial types), que são uma funcionalidade nativa das 
linguagens .NET. A utilização de funcionalidades nativas das linguagens para o MDSoC é 
uma inovação e é possivelmente uma das contribuições mais interessantes deste trabalho. 
Como forma de validação, o Hyper/Net foi analisado à luz do modelo MDSoC e comparado 
com outras implementações. Foi também utilizado na implementação de casos de estudo 
simples, que mostram os benefícios do MDSoC. Finalmente, os resultados de cada caso de 
estudo foram validados através da utilização de testes unitários, adaptados ao MDSoC. 
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Abstract 

This dissertation uses Multi-Dimensional Separation of Concerns (MDSoC) to focus on 
software composition. Software composition emerged as a response to difficulties found in 
modularization with standard Software Engineering approaches such as Object Oriented 
approaches. MDSoC provides a unified multi-dimensional modularization mechanism that is 
usable across all the stages of the software lifecycle. This modularization mechanism 
complements the existing approaches, instead of replacing them.  

Most of the work presented in this document addresses MDSoC implementations for 
programming. We developed such an MDSoC implementation for Microsoft .NET and called 
it Hyper/Net. Hyper/Net is based on partial types, which is a native feature of .NET 
languages. Relying on native language features for MDSoC is a novelty and is possibly the 
most interesting contribution of this work. To validate Hyper/Net, it was analyzed in the light 
of the MDSoC model and compared with other MDSoC implementations. Hyper/Net was also 
used to implement simple case studies that show the benefits of MDSoC. Finally, the results 
of each case study were validated by a unit testing approach, which was adapted for MDSoC. 
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Life hanging from petals 
 

A seed into the ground 
taken there by a myriad small things 

growing into time 
roots spreading and everything. 

 
First a flower, 

small, shy, fragile, 
managing energy against entropy, 

to grow wider, deeper in color, 
scenting all around the tree, 

and also everyday easier to see. 
 

Petals have their time to be, 
a fruit was an aim 

and the flower just something to see? 
Many surely disagree, 

but the juicy fruit, 
the aim, 

is what ends up showing itself to me. 
 

Picking it could come from necessity 
but if weeks before 

reaching at the same tree 
you would be picking 

out of curiosity 
and, well, then the fruit wouldn't be. 

 
Knowing not of words, 

not even capable of planning, 
something simple, 

like planting another tree. 
Both fruit and flower serve their purpose 

and I figure Shakespeare could say "they be". 

TheDruid (2003) 
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Symbology and Notations 

� Italics are used to introduce new concepts and also to represent entities from the 
programming artefact of our examples (methods, classes, etc.). 

� Closed braces [] are used to identify bibliographic references, which are listed from page 
134 onwards. 

� The Courrier New font is used to present snippets or entire blocks of source code. 

� This dissertation is organized using a chapter – section – subsection hierarchy. 
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Chapter 1  

 

Introduction 

Software Engineering, as a branch of Engineering, provides a body of approaches that can be 
used to develop, operate and maintain software in a systematic, disciplined and quantifiable 
fashion [IEEE90]. These approaches break-up the process of software development into 
different, interrelated stages. Each stage in a software development approach is usually 
addressed by a different field of Software Engineering. This allows each field to focus 
particular aspects of the development process and allows the clear separation of the different 
needs that arise during software development. This separation is adequate for development 
because most approaches complete one stage before moving to the next, allowing the gradual 
detailing of the software pieces as they are developed.  

This would be perfect if development was a completely planned task, done in a single 
iteration. On the contrary, most software has to evolve after its initial development is 
considered finished. Software evolution affects most stages of the Software Engineering 
approach that was applied. Evolution will require revisiting each stage and working in the 
context of the existing software elements. In fact, most problems in Software Engineering 
arise during evolution, after systems are initially developed and deployed. This happens 
because the software is initially developed to be optimally organized for its purpose, 
eventually leaving room for a few predicted improvements. As practice dictates, new features 
are usually not predicted or expected and, thus, require being implemented into the existing 
structure that was not designed for them. As a result, adding features becomes time-
consuming and, eventually, risky. Even worse, it directly contributes to lowering the quality 
of the original implementation, leading way to a cycle in which software becomes degraded 
and more complex, as time, and enhancements, go by [Lozano06]. This cycle also causes an 
increasing difficulty in making changes to the software. 

It is true that risk can be minimized by using adequate tests and adopting a test driven 
development approach. Still, testing does not help avoid the degradation of the 
implementation. It is also true that many changes that are not specifically planned can be 
supported using general extension approaches, like those provided by some design patterns. 
But, supporting changes comes at the cost of implementing these extensions during initial 
development. Furthermore, not all changes will be supported by these extensions. 

Refactoring can be used to mitigate the degradation of existing software implementations, 
when new features are introduced, by adapting the existing software organization to the new 
requirements. Still, it would be desirable to support the new features required by evolution as 
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if they had been introduced during the initial development. None of the previous solutions can 
fully achieve this requirement. Yet, this is achievable if software captures the features alone 
and then integrates them with each other. This way, when introducing new features, the 
existing features do not need to be changed, but, only their integration does. This is the 
principle behind a set of solutions called composition solutions. This document focuses on 
one such solution in particular: Multi-Dimensional Separation of Concerns (MDSoC). As we 
will see, MDSoC is especially important because it supports the same multi-dimensional 
organization of software across the different stages of development.  

1.1 Goals of this dissertation 

The main goal of our work was to be able to use MDSoC while programming in .NET 
languages, in particular C#. It should be possible to use existing development infrastructures 
and as little as possible should need to be changed in the development process, apart from 
adopting an MDSoC approach. 

After achieving this first goal, the adequacy of the MDSoC features possible with .NET 
languages should be validated. To do this, a classic example in MDSoC literature, the 
Expression SEE, should be implemented using .NET languages and MDSoC.  

Finally, to guarantee that the example worked properly, it should be adequately tested for 
local functionality as well as overall functionality and the different possible combinations of 
functionality achieved by removing particular features. 

1.2 Contribution of this work 

As stated, our main goal was to implement MDSoC for Microsoft .NET, which is a multi-
language programming environment. Other contributions were gradually achieved in a natural 
way as we used, evaluated and contextualized our MDSoC implementation. Namely, by 
providing examples of MDSoC usage, introducing a testing approach tailored for MDSoC and 
comparing existing MDSoC implementations. 

To implement MDSoC for .NET, first, we identified important separation of concerns 
capabilities in partial types, which is a native feature of .NET 2.0 languages. This enabled us 
to develop a simple MDSoC approach using partial types (Section 6.1). This approach 
requires no other software aside from the Microsoft .NET framework and its standard 
development tools. This may be considered an innovation as most composition solutions 
require additional software, other than the original language compilers. The partial types 
approach is limited to composing types, which limits its abilities to separate concerns. It was 
extended to support method composition by developing Hyper/Net (Section 6.2). 

With Hyper/Net we were able to develop small examples where the benefits of using MDSoC 
are clear. The examples themselves, in particular the ones presented in Sections 7.4 and 8.21, 
provide a small contribution, as they differ from the traditional MDSoC examples one can 
find in the existing literature. Due to time constraints and the prototype nature of Hyper/Net, it 

                                                
1 Hyper/Net was implemented using the partial types MDSoC approach and its implementation is presented as an 
example of MDSoC usage. 
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was not possible to use it to develop a real-world application, which could provide further 
support regarding the benefits of MDSoC.  

The need to test our small MDSoC examples motivated us to explore a testing approach that 
is adequate for MDSoC. This testing approach is presented in Section 7.3, as part of a chapter 
that addresses the more pragmatic aspects of the partial types approach and Hyper/Net. 

Finally, existing MDSoC implementations are presented in Chapter 5 and compared with 
Hyper/Net in Section 9.2. 

1.3 Document structure 

This dissertation can be divided into three parts. The first part, from Chapter 2 to Chapter 5, 
provides background information on composition solutions and existing MDSoC 
implementations. The second part, from Chapter 6 to Chapter 8, presents our own MDSoC 
implementation: Hyper/Net. The third part, Chapter 9 and Chapter 10, wraps-up the 
dissertation by comparing all the MDSoC implementations, providing conclusions and 
presenting future work. Finally, the document closes with Apendix I, where the Hyper/Net 
source code is listed. 

It may also be adequate to separate the first two chapters (Chapter 2 and Chapter 3) from the 
following chapters, as they present the models of composition solutions. The following 
chapters (Chapter 4 to Chapter 8) address MDSoC composition implementations rather than 
the model. 

This document starts by presenting two composition approaches. The first, Subject Oriented 
Programming (SOP), is presented in Chapter 2. SOP proposes a multi-perspective view of 
OOP, with different classes implementing different views of the same object. Next, Chapter 3 
presents the MDSoC model as an elaboration of the SOP model. MDSoC introduces a 
structure for holding the views of the SOP model and provides a unified multi-dimensional 
view of the different stages of software development. 

The remaining of this document focuses on MDSoC implementations. Chapter 4 provides the 
necessary technical background regarding the languages and platforms used in the MDSoC 
implementations. Chapter 5 presents two different MDSoC implementations, one targeting the 
Java language (Hyper/J) and, another, the C# language (HyperC#). Chapter 6 presents two 
MDSoC approaches that were developed by us: the .NET partial types approach and 
Hyper/Net. They are evaluated from the perspective of the MDSoC model presented in 
Chapter 3. Chapter 7 is targeted at developers and architects and describes how both of our 
MDSoC approaches can be used. It also provides details on how to test MDSoC programs. It 
ends with two complete examples of simple programs developed using our MDSoC 
approaches. Chapter 8 describes the architecture and implementation of Hyper/Net from an 
MDSoC perspective.  

Chapter 9 compares the different MDSoC implementations according to architectural, 
structural, compositional, usage and reuse criteria. Finally, Chapter 10 provides conclusions 
on our work and identifies possible directions for future work, both for Hyper/Net and for the 
remaining focus points of this document. 
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Chapter 2  

 

Subject Oriented Programming 

Subject-Oriented Programming [Harrison93] was introduced in 1993. Subject-Oriented 
Programming (SOP) extends the Object Oriented Programming (OOP) model by sub-dividing 
class-hierarchies into subjects that latter are composed together. Subjects can be seen as 
containers for classes under a specific point-of-view or perception of the world. A class, 
which usually agglomerates several different points-of-view in OOP, will give away to 
several different classes in SOP, each located in the appropriate subject container. Subjects act 
solely as containers and the classes contained by them will still be constructed in a fully OOP 
manner. While some subjects will be useful in a standalone fashion, most require composition 
with other subjects to extend their usefulness.  

This chapter starts by presenting the SOP model according to [Harrison93]. Next the SOP 
composition model is analysed in more detail, based on the SOP composition model as 
presented in [Ossher96]. After that, the benefits of SOP for software engineering are 
overviewed. Finally, Subject Oriented Design, an extension of the SOP approach for UML 
design diagrams, is presented. 

2.1 The SOP model 

SOP allows the separation of classes into different subjects. In order to be useful, most of the 
classes inside these subjects must be composed. One of SOP’s composition mechanisms is 
additive composition. Additive composition combines all aspects of the composed elements. 
SOP supports a particular additive composition, merge composition [Harrison93]. With merge 
composition, if different subjects implement the same method for a composed class, when the 
method is invoked, all corresponding methods in each composed subject will be invoked in 
turn. A different composition method, nesting, is also proposed in [Harrison93]. Nesting uses 
the order of compositions to create scopes in which to invoke methods. The more recent 
compositions are the ones that are readily available for method invocation.  

Composition enables instances of classes in different subjects to be correlated. At runtime this 
is done through identity elements called oids (object identifiers). If two classes from different 
subjects are composed together, by creating an instance of one of these classes, an instance of 
the other will also be created. These classes are related by a common oid that is allocated 
during initialization. Two initialization models are proposed in [Harrison93]: an immediate 
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and a deferred initialization model. Deferred initialization offers better performance than the 
OOP equivalent of the composed subjects, especially when several subjects are being 
composed. In immediate initialization all classes associated with the newly created oid are 
initialized at the same time during object initialization. In deferred initialization, classes 
associated with the newly created oid are only initialized the first time a method or variable 
they offer is accessed. Deferred initialization has a requirement that constructors do not have 
any parameters. According to [Harrison93] the absence of construction parameters is also 
beneficial for adding new subjects without the need to change class construction, 
independently of the initialization model. Otherwise, if constructor parameters are used, 
constructor composition would become more complex (or even impossible) in order to 
support deferred initialization or adding new subjects dynamically. 

Composition requires that classes are matched between different subjects. One simple method 
is explicit matching by class names. Even this simple matching mechanism enables subjects 
to have exclusive classes that match no other subjects. This allows each subject to hold its 
own class hierarchy, having only a subset of its classes that explicitly match other subjects’ 
classes. Sometimes there is also advantage in matching some of these classes that have no 
explicit matching. [Harrison93] explores some non-explicit matching methods. 

When different class hierarchies are being combined, there are several detriments to keeping 
each existing inheritance structure while matching different class hierarchies. First of, there 
might be no semantic value attributable to the combined inheritance structure; the hierarchies 
might make sense only in the context of each subject. Furthermore, the resulting class 
hierarchy might exhibit cycles and the diamond problem. Finally this approach limits the 
composition of subjects from different languages as semantic details with their own 
inheritance mechanisms would have to be integrated (for example multiple-inheritance). As 
such, [Ossher96] introduces the process of flattening class hierarchies prior to composition. 
Flattening is the process of copying all inherited methods and variables to the classes being 
matched and removing all inheritance information. This way, there is no class hierarchy in the 
composed result. This might be an acceptable result, especially taking into account 
[Harrison93] advises against extending the composition result itself. [Harrison93] suggests 
that all work should be done in each subject prior to composition. 

While creating or extending an application with SOP, subjects may be added as needed. For 
instance, if a certain class starts to grow in a particular subject and parts of the class do not fit 
the subject’s scope anymore, those parts may be factored out into an appropriate new subject. 
As such, subjects can start-out with only a single class and then grow as other classes fit the 
subject. This way some subjects might be more important than others: one such subject is the 
“intrinsic” subject referred by [Harrison93]. An “intrinsic” subject usually captures internal 
state and essential behaviour of a particular object, with other subjects capturing elements 
from the perspective of external viewers of the object.  In most cases, the “intrinsic” subject 
will become the dominating subject in a SOP application. This might be limiting to other 
subjects but in fact is not, as SOP enables each subject to have its own class hierarchy, 
independently from the “intrinsic” subject hierarchy. Nevertheless [Harrison93] leaves it up to 
the designer or programmer to determine if an “intrinsic” subject should be used or if a more 
equalitarian subject space is appropriate. 
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2.2 Detailing the SOP composition model 

A more formal model for SOP is also presented in [Harrison93]. In this model composition is 
presented as a tuple (R, Q) where R is a composition rule and Q is a set of components. These 
components can be either subjects or other compositions, making composition rules in this 
model recursive. [Harrison93] does not detail the nature of composition rules R, but, to allow 
reuse, these should be general (like merge), unbound to subject elements. In such case, there 
is a major limitation in this model as it only enables the composition of entire subjects and 
does not offer constructs to compose elements from each subject in different ways. The 
granularity of the composition mechanism defines its power. Versatile composition 
mechanisms that are able to operate simultaneously at different levels are the most powerful 
solution. [Ossher96] introduces such a model for subject composition. This model overcomes 
the limitations of the [Harrison93] model by using general rules together with a set of 
exceptions clauses. Exception clauses enable defining special composition behaviour at a 
finer granularity than the rules which operate at the entire subject level. In fact, general rules 
are created in a modular fashion from the same clauses which are used for expressing 
exceptions. Many aspects of the general rules construction are parameterizable when general 
rules are used. As such, the model introduced in [Ossher96] is customizable, by allowing the 
parameterization of existing rules, and extensible, by allowing the creation of completely new 
rules. 

[Harrison93] does not define a structuring mechanism for the subject space. Nevertheless, the 
hierarchic nature of composition (due to its recursiveness) offers some structuring support. 
Different orders in the hierarchy of composition can be used to structure our subjects 
differently. But relying on composition to structure a subject space is too limited; the subject 
structure will always be influenced by the semantics of composition. This may not be an issue 
in small subject spaces, but for larger subject spaces, SOP lacks a specific subject structuring 
mechanism. 

2.3 Software Engineering benefits of SOP 

[Harrison93] also presents implications of SOP in software engineering. New subjects can be 
added to running applications without requiring their recompilation. This is an important 
technical achievement with several implications in project development methodologies. By 
supporting runtime extension of software, features can be deployed incrementally as they are 
designed, developed, composed and tested, without affecting the availability of the running 
environment. SOP also provides increased encapsulation as composition is external to 
subjects, so these are independent and need not be changed for integration. This enables the 
standalone creation and evolvability of subjects without imposing it. It is always possible to 
develop tightly coupled subjects or loosely coupled subjects with particular compositions in 
mind. 

[Ossher96] introduces the idea of composing subjects written in different languages. This is 
also a very important concept because it would enable the choice of the most appropriate 
language to implement a particular subject. This way, some subjects could use logic 
programming while others OOP or other appropriate paradigms.  

[Ossher96] also proposes the usage of subjects for separating the code according to the 
different requirements identified during analysis. This is an important step as it will enable a 
direct mapping of requirements to design and code as presented in [Clarke99]. 
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2.4 Subject Oriented Design 

SOP is tailored for the modularization of code. Nevertheless, subject containers seem 
adequate to be applied to other artefacts of the software lifecycle, namely design and analysis 
artefacts. This is especially true if taking into consideration the proposal of using subjects to 
directly map different requirements [Ossher96]. As such, [Clarke99] introduces a Subject 
Oriented Design (SOD) model. 

To understand the need for SOD, [Clarke99] introduces several issues in mapping 
requirements to object oriented design. The artefacts involved in the software lifecycle have 
their own decomposition mechanisms. Though, most artefacts are limited to one kind of 
decomposition. Typical analysis processes are based on functional decomposition by 
requirements. Object oriented design and programming both lack a functional decomposition 
mechanism but instead provide object decomposition. Object decomposition is useful as it can 
match concepts of the application domain and categorize them. But artefacts are not isolated, 
there is need to map analysis requirements to design and then to code. If such mapping is 
effective, requirements can be traced throughout artefacts. In fact, other kinds of 
decomposition, namely objects, can also be used for such tracing (usually from code to design 
and requirements). In reality, because artefacts have different and incompatible 
decompositions, a direct mapping is impossible. Functional components (namely analysis 
requirements) are scattered throughout several objects (in object oriented design and code) 
and different objects are tangled within requirements. Direct traceability between artefacts is 
thus impossible when the artefact decomposition mechanisms do not match. 

Before introducing the SOD solution, [Clarke99] tries to use the object decomposition, in 
particular inheritance, to create functional decompositions for a specific example. In 
[Clarke99]’s example, there is a requirement that maps to extending a particular method, 
shared by several classes in a hierarchy. To implement this requirement in a decomposed 
fashion, each existing class is extended using inheritance. Each extended class will have an 
override of the existing method that implements the new requirement, also invoking the 
existing functionality. After the addition of a few features, using this kind of decomposition, 
the class hierarchy will have grown several times in size. At this point, the addition of new 
class elements will also require the creation of all the subclass structure introduced by 
features, resulting in a combinatorial explosion. Thus, using inheritance to complement object 
decomposition with functional decomposition negatively affects object decomposition. 

[Clarke99] and [Tarr99] also explore design patterns in search of solutions to align the object 
decomposition with the functional decomposition. For instance, the Visitor pattern decouples 
functionality from the objects themselves by having a receiver method in each object and, for 
each functionality, a visitor class with a set of visitor methods2. Nevertheless, receiver 
methods still need to exist outside the features themselves, scattered throughout the class 
hierarchy. Adding new classes requires the creation of new visitor methods in each feature 
that is decomposed as a visitor. Furthermore, not every feature is prone to decoupling through 
the Visitor pattern. Other design patterns can help when the Visitor pattern is not applicable, 
but exhibit similar issues. For instance the Observer pattern, which is particularly useful for 
decoupling logging requirements, scatters notification invocations throughout the object 
decomposition. Other solutions using factories or proxies are also intrusive, requiring changes 
to the object types handled by existing code. More generally, solutions based on design-
patterns require previous planning, for example by the introduction of hooks, visitor methods, 

                                                
2 There will be as many visitor methods in the visitor class of a particular functionality as the number of objects 
that are affected by it. 
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observer notifications or changing the object types used. Otherwise, introducing such 
elements latter on will involve an intrusive change. 

[Clarke99] introduces design subjects as a functional decomposition for object oriented 
design. Each subject regards only a particular feature or non-functional requirement (like 
logging or security requirements) and exists both in design and code. Like in SOP, each 
subject is constructed by objects. So the functional decompositions introduced by subjects 
contain object decompositions. This way, subjects are not expected to limit the de-
compositional power of object oriented design. The premise of enabling work to be done 
using existing languages and formalisms found in SOP is kept in SOD. [Clarke99] instantiates 
SOD for use with UML, in particular class and interaction diagrams. Each design subject 
contains a partial class diagram which will be composed with other subject’s class diagrams 
to form a complete class model. Even though class diagrams are partial, each subject’s class 
diagram will need to be complete in regards to the subject’s functionality (i.e. the diagram 
may not reference functionality that it does not offer itself). This requirement is know as 
declarative completeness [Ossher99]. [Clarke99] gives an example of two features, each in its 
own subject, that use the same class hierarchy. Each subject needs to access data items about 
each class. As both features need these data items, they are replicated in the class diagram for 
each feature (subject). When it comes to implementation, declarative completeness may force 
each subject to hold replicated implementations. To avoid replicated code, [Ossher99] 
proposes for MDSoC the SOP equivalent to having only one subject actually implementing 
the replicated functionality while others only declare it (e.g. using abstract methods). 

[Clarke99] introduces an additional composition construct: select composition. Select 
composition brings the novelty of being able to decide how to mix-and-match3 features during 
runtime (based on runtime variables or configuration elements). Subjects composed using 
select composition can have a runtime variable determine which of them, or group thereof, 
will be chosen for execution. SOP only provides native support for static mix-and-match. 

2.5 Conclusions 

SOP retains OOP at its core but uses subjects as containers for different aspects of the same 
concept. It implements different kinds of subject composition, among which additive 
composition. In SOP, as a result of a process called flattening, existing class hierarchies are 
not retained after composition. SOP can also provide advanced composition features, like 
allowing the introduction of new features during runtime or being used to compose subjects 
written in different languages. 

SOP brings functional decomposition to programming and, with it, additive change 
capabilities. SOD brings these to design. With SOD and SOP, direct traceability from 
requirements to code is achieved, even with design and programming formalisms that favour 
decomposition methods other than functional decomposition.  

                                                
3 Mix-and-match refers to the possibility of creating different flavours of a program by removing and introducing 
different features and components. In SOP, this is achieved statically with different subject compositions. Each 
subject composition can generate a different program.  
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Chapter 3  

 

Multi-Dimensional Separation of Concerns 

(MDSoC) and Hyperspaces 

Multi-Dimensional Separation of Concerns (MDSoC) was introduced in 1999 [Tarr99]. Like 
Subject Oriented Programming (SOP), MDSoC is a composition solution. 

This chapter starts with a section justifying the need for MDSoC. This is done by 
acknowledging the domination of a particular decomposition criterion in each different 
formalism. One such case is the domination of the object-decomposition in OOP. MDSoC 
follows-up on the work done in SOP to address this issue. It extends SOP support for 
separation of concerns in the code artefact to a generalized model usable along multiple 
artefacts. MDSoC adopts a multi-dimensional structure for concern spaces that did not exist in 
SOP. In MDSoC, these structured concern spaces are called hyperspaces. 

The MDSoC model is presented in Section 3.2, following [Tarr99] [Ossher99] and [Tarr01]. 
It is separated according to the two main stages in adopting the MDSoC model: 
decomposition and composition. Decomposition is achieved by populating a hyperspace 
which is structured by dimensions with the respective concerns. Composition is achieved by 
means of a separate composition definition: hypermodules. 

Section 3.3 presents the Expression SEE example which is an example of MDSoC usage 
explored in most MDSoC literature, namely [Tarr99] [Ossher99] [Ossher00] and [Tarr01]. 
This example is also presented here as its implementation using Hyper/Net (our MDSoC 
implementation) will be detailed in Section 7.5. 

3.1 The need for MDSoC 

Section 2.4 addressed a relevant limitation commonly exhibited by most software artefact 
formalisms. Most of these only allow one dimension of decomposition, be it functional, object 
or any other. [Tarr99] calls this issue the “tyranny of the dominant decomposition” and 
considers it the major issue addressed by MDSoC. 

Section 2.4 presented examples where the dominant decomposition of a particular artefact is 
used to support a different dimension of decomposition. One such example, in the code 
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artefact, using the OOP formalism, is that classes can be extended to separate their support of 
different features. In this example, the object dimension, that is dominant in OOP, is used for 
decomposition in the functional dimension. Although decomposition in a dimension other 
than the dominant one is achieved with these examples, the dominant decomposition is lost. 
In the previous example, the objects from the problem domain will end-up scattered in several 
sub-classes. Thus, even if the dominant decomposition of an artefact can be used for a 
different dimension of decomposition, it will only be usable for that dimension and looses its 
decomposition power in the dominant one. Furthermore the decomposition achieved in 
dimensions other than the dominant one is not at all optimized. Frequently, it is necessary to 
rely on artificialities: for example, the sub-classes from our previous example would identify 
features by a suffix in their name. As expected, some kind of alternative decomposition 
mechanism is required to achieve decomposition in more than one dimension with these 
formalisms. 

Subject Oriented Design primarily addressed the issue of traceability from (functional) 
analysis to design and code. As such, Subject Oriented Design enhanced UML (an object 
oriented design formalism) to contain an additional decomposition along the functional 
dimension. This was achieved with the introduction of design subjects in UML. Subject 
Oriented Programming provided support for the same functional decomposition in the code 
artefact with subjects. But neither Subject Oriented Design nor Subject Oriented 
Programming were limited to adding only the functional dimension of decomposition to 
artefacts. In fact, several dimensions could be handled at the same time, given that appropriate 
subjects were introduced. 

MDSoC is a follow-up to the work on Subject Oriented Programming by Harrison and 
Ossher. MDSoC supports multiple dimensions of decomposition in much the same way that 
Subject Oriented Programming and Subject Oriented Design do. That is, by separating 
concerns (Subject Oriented Programming and Subject Oriented Design did it using subjects4) 
and then providing a composition mechanism to compose the separated concerns into working 
blocks of software. In Subject Oriented Programming, subjects from all the dimensions will 
coexist at the same level. Thus, although SOP supports multiple-dimension decomposition, its 
model does not acknowledge this with any kind of structure for subjects, leaving them in an 
unorganized space. Additionally, SOP literature [Harrison93] [Ossher96] does not refer to 
multiple-dimensions of decomposition: it was MDSoC literature that acknowledged this 
concept [Ossher99] [Tarr99].  

We have seen that SOP lacks an organization mechanism for its subject space. The semantics 
of composition impose the structure of this subject space, not allowing a structure based on 
different requirements. Furthermore, this structure only exists after a particular composition is 
done. There will still be no structure for the original subjects when using them in different 
compositions. MDSoC overcomes these limitations of SOP with a model for hyperspace that 
provides natural support for decomposition along multiple-dimensions. 

SOP addressed only the code artefact in the OOP formalism. Subject Oriented Design had to 
be introduced to address the same needs at design level. MDSoC has a different approach. 
The MDSoC model was defined at a more abstract level, allowing it to be applied to all kinds 
of software artefacts and formalisms. MDSoC defines a hyperspace structure for concerns 
which is populated by elements from any artefact. This way, a particular concern will contain 

                                                
4 MDSoC concerns and SOP subjects can be seen as container elements for software units, where each container 
element represents a different perspective. The term “concern” was introduced with this meaning by Dijkstra 
[Dijkstra74]. [Dijkstra74] also introduced the concept of separation of concerns as a “technique for effective 
ordering of one’s thoughts”. 
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all relevant elements from the different artefacts. MDSoC refers to concerns instead of 
subjects, but these entities are pretty much equivalent; that is, concerns and subjects are both 
semantically significant containers. In the case of SOP, subjects can only contain elements 
from OOP code, while in MDSoC concerns can contain elements from any artefact 
formalism. 

The MDSoC model works only as a complement to existing formalisms. MDSoC does not 
introduce any new formalism itself. This way, it should be easily used by anyone already 
acquainted with a particular set of formalisms. MDSoC can be used straight from the 
beginning of a software project until the end, being applied to the whole software lifecycle, or 
it can be applied at any point of the software lifecycle. In particular MDSoC can be used for 
refactoring existing programs, allowing an easier extension and evolution of these programs. 

MDSoC shares with Subject Oriented Design the objective of fully supporting direct 
traceability between artefacts. MDSoC also aims to achieve a very high level of 
modularization flexibility to address complexity and provide comprehensibility for otherwise 
unintelligible software. MDSoC aims to promote reuse based on its advanced modularization 
capabilities, which also help to achieve a high level of decoupling. Finally, MDSoC should 
ease evolution by achieving a high level of decoupling, providing elevated comprehensibility 
and offering direct traceability between artefacts. 

3.2 The MDSoC hyperspace model 

MDSoC is centred on the MDSoC hyperspace, which is a multi-dimensional concern space. 
As can be seen in the previous section, concerns are a key element in MDSoC. Throughout 
[Tarr99] there are several references to different kinds of concerns such as functional 
requirements, customizations, concepts5 (objects) and non-functional requirements. Many 
concerns will exist, belonging to each of these kinds. Features will usually map to functional 
requirement concerns, but some features might be achieved by offering customization 
concerns (on existing functional requirement concerns). Other features, like persistence and 
security, are non-functional, thus map to non-functional requirements. Non-functional 
requirements usually affect the entire functional concern set, thus they are overlapping. All of 
these different features will be related with real-life or virtual concepts or entities that make-
up the problem domain, and form themselves one kind of concern. Each of the concerns 
belonging to the prior kinds may contain up to the entire set of concepts of the domain, thus 
overlapping with the concept concerns.  

It can be observed that most of the different kinds of concerns overlap. This is one of the main 
issues addressed by MDSoC. In MDSoC, each of these concern kinds can be considered as a 
different dimension. Concerns define the coordinate system of each dimension, as can be see 
in Figure 1. 

                                                
5 It is important to stress that concerns and concepts are not the same thing. Concepts are representations of real-
life or virtual objects while concerns are abstract grouping elements. At some points [Tarr99] uses the words 
concepts and concerns interchangeably.  
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Figure 1. A representation of the MDSoC hyperspace. 
Hyperslices contain the implementation units. 

Only the implemented concerns are populated by hyperslices. 
 

During the software lifecycle, concerns will be implemented using different artefacts. 
Initially, using requirement artefacts (like textual descriptions of requirements), then using 
design artefacts (eventually UML diagrams). Finally, the running implementation has to exist 
in a code artefact. But, more artefacts can be involved at this stage, namely test artefacts. The 
concerns are the same throughout these artefacts. But, as stated previously, most of the 
artefact formalisms only support one dimension of decomposition, called the dominant 
dimension of decomposition. Concerns belonging to any other dimension (or kind of 
concerns) will be scattered throughout the concerns of the dominant dimension of 
decomposition. Nevertheless, they will still exist in all artefacts, even if scattered. 

Artefact formalisms are not monolithic but made up of parts. [Tarr99] calls these parts units. 
In MDSoC, different units may be placed under different concerns. While some units can be 
further divided, others cannot. Units that can be further divided are referred to as compound 
units while indivisible units are called primitive units [Tarr99]. In OOP, packages/namespaces 
and classes are compound units. Methods should also be considered compound units because 
they are made of statements. But, sometimes, indivisible units of an artefact are of a very low 
granularity. Supporting a hyperspace made-up of primitive units of a very thin granularity is 
harder than if compound units are chosen. Furthermore, very low levels of unit granularity 
may not be useful if units at a higher level of granularity always belong to the same concept. 
Back to OOP, even statements can be further divided. But, if we assume it would not be good 
practice to have the same statement address two or more different concerns, it would be a 
waste to consider statements as compound units. To cope with this, [Tarr99] defines that after 
a particular level of choice, compound units may be considered as primitive units: indivisible. 
As we will see, the original implementation of MDSoC for OOP – Hyper/J6  – defines that 
methods are primitive units7 [Tarr01]. Hyper/J does not allow decomposition beyond 
methods. 

Without MDSoC we have the following decomposition hierarchy: 

Artefacts → Modules → Units 

There is always decomposition in the artefact dimension due to physical impositions (artefacts 
are separate). The modules of each artefact then provide decomposition in the dominant 

                                                
6 Hyper/J will be analyzed in some detail in section 5.1. 
7 For the sake of correctness, Tarr should have defined primitive units as the smallest units that can be composed. 

Dimension N 

Hyperslices Concerns 

Dimension 1 

Dimension 2 
Hypermodule 

Hypermodules 



25 

dimension (for example, requirement specifications are decomposed functionally and in OOP 
classes provide decomposition in the concept/object dimension). MDSoC introduces three 
new top-level elements to this hierarchy: 

Dimensions → Concerns → Hyperslices → Artefacts → Modules → Units 

As seen previously, dimensions are grouping elements, holding concerns of the same kind. 
These concerns exist only conceptually and need to be instantiated as hyperslices. In MDSoC, 
it is common for a concern to be instantiated by a single hyperslice [Tarr99], but more than 
one hyperslice can exist for a single concern [Ossher99]. Hyperslices contain units from a 
particular concern. In case a concern is instantiated by a single hyperslice, as proposed in 
[Tarr99], all the units pertaining to that concern will belong to its respective hyperslice. These 
units may belong to different artefacts and can still be organized in the modules provided by 
the artefact formalisms inside the hyperslices. As such, each hyperslice may contain a part of 
the artefact dimension as well as parts of the dimensions in which each artefact formalism 
provides modularization. Both the artefact dimension and the dimensions of modularization of 
each formalism can exist as MDSoC dimensions. 

3.2.1 Hyperslices 

Concerns are abstract entities. To allow decomposition according to how units map to 
concerns, hyperslices had to be introduced [Tarr99]. Hyperslices provide the mean to 
implement concerns in particular artefact formalisms. Typically, each hyperslice corresponds 
and implements a particular concern. Thus, each hyperslice shares with its respective concern 
a place in a dimension of the MDSoC hyperspace (see Figure 1).  

There are two distinct approaches to implement hyperslices in any given artefact formalism. 
The authors of the MDSoC model do not discuss these at an abstract level but we consider it 
an issue of importance. 

One approach to creating hyperslices is to use the native decomposition features of each 
formalism. These are used to create modules that map a specific concern, thus creating the 
respective hyperslice. This approach can be referred to as the physical hyperslice 
implementation approach as it physically separates hyperslices. For example, in OOP, 
different features pertaining to the same object may be implemented in different classes. Each 
of these classes will then belong to a different package/namespace (a module in OOP). The 
same features for other objects may also be implemented in their own classes and share the 
same packages/namespaces. Each of these packages/namespaces is in fact a hyperslice 
populating our hyperspace. This example used the feature dimension, but other dimensions 
could be used. We have already focused cases of decomposition along dimensions other than 
the dominant one. In general, those decompositions work without any other kind of support, 
but invalidate decompositions in the dominant dimension. The kind of decomposition used to 
implement hyperslices is no exception, but we will see that MDSoC recovers lost dominant 
decompositions as a virtual dimension. The major advantage of the physical hyperslice 
implementation approach is that it allows the manipulation of hyperslices, by themselves, in a 
native module of a given formalism. For instance, a developer looking at a 
package/namespace that implements a particular hyperslice will only see units pertaining to 
the concern of that hyperslice. 

The second approach is not as intrusive as the first one. Existing units will be decomposed 
along the dominant dimension of each formalism. Then a mapping system binds each of these 
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units to the appropriate concerns. This approach can be referred to as the virtual hyperslice 
implementation approach as, with this approach, hyperslices are not materialized and only 
exist virtually. Dimensions composed of hyperslices created this way may also be considered 
virtual. The virtual hyperslice implementation approach provides the only solution to map 
modules from different artefacts to the same hyperslice. It is also useful when existing 
software is decomposed, especially software for which no source code is available. 

The physical approach has the great advantage of allowing the native manipulation of 
hyperslices, at least the parts belonging to each formalism. But the virtual approach offers 
important support both when more than one formalism is used in hyperspace and when 
existing software is decomposed. Thus, in practise, MDSoC uses a hybrid version of these 
two approaches. This hybrid version allows the physical separation of hyperslices in each 
formalism, but also offers mapping capabilities (inside the same formalism or in between 
formalisms). The hybrid version allows achieving the best physical decomposition, while 
having mapping capabilities to match modules in different formalisms to the same hyperslice. 
Furthermore, matching can also be used to match any physically indecomposable units to 
different concerns in different dimensions.  

When either the physical approach or the hybrid approach is used, the dominant dimension of 
decomposition of each formalism will be lost. This dimension will only be usable in a native 
fashion locally in each hyperslice and in the result of composition. As such, for OOP, 
[Ossher99] introduces the object dimension, which Hyper/J generates automatically as the 
Class File dimension [Tarr01]. This is a virtual dimension, like the dimensions obtained from 
hyperslices created using the virtual approach. Still, an appropriate tool can provide adequate 
manipulation of units as seen from this dimension. The same process can be used to 
implement an object dimension for artefact formalisms lacking a native object decomposition 
mechanism. 

The artefact dimension is not affected by any of the hyperslice implementation approaches. 
Simply because there is no way to physically modularize together units from different 
artefacts. Nevertheless [Ossher99] introduces the artefact dimension. The artefact dimension 
is physically supported by the fact that different artefacts are implemented in different 
formalisms. 

In terms of the mathematical definition of a hyperspace (as a multi-dimensional coordinate 
space) hyperslices are considered hyperplanes [Tarr99]. This is because they contain units 
from different coordinates in the artefact dimension and in the dimensions in which each 
artefact formalism provides native modularization. Figure 2 depicts an example on a 
hyperplane defined by a particular concern (Feature #1) of a Features dimension. 
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Figure 2. The hyperplane that is defined by a concern. 
 

It is important to note that units can belong to more than one hyperslice. Hyperslices that 
share units are said to overlap. Sometimes overlapping hyperslices can be avoided by 
decomposing the shared units, so they become distinct, and relying on composition to join 
them again. 

Hyperslices may depend upon units not contained there-in, thus depending on other 
hyperslices that provide these units. The same thing happened with subjects in SOP. To avoid 
this kind of coupling in MDSoC, [Ossher99] introduces the concept of declarative 
completeness for a hyperslice. Hyperslices have to be declaratively complete, that is, they 
must contain declarations for all referenced units not contained in them. 

[Ossher99] adds that hyperslices in the same dimension never overlap, so one unit can exist 
only once in each dimension. This is an important restriction as it enables 
hyperslices/concerns to work as coordinates in each dimension of the MDSoC hyperspace. 
[Ossher99] also defines that each dimension must be complete, that is, all units in hyperspace 
must belong to all dimensions. This may be artificial for most situations. As such, [Ossher99] 
proposes the introduction of a special concern in each dimension – the None concern – 
holding all units that will not fit any of the other concerns in the dimension.  

We have seen that dimensions can be defined based on the kinds of concerns emerging from a 
problem domain. Knowing when to add new dimensions to an existing hyperspace is also an 
important issue. [Ossher99] addresses it by realizing that hyperslices must fit in a dimension 
where they do not overlap any other hyperslices. If there is no such dimension for a particular 
hyperslice, either the hyperslice is incorrectly constructed or there exists no dimension 
adequate for this hyperslice. This last case is when a new dimension should be created. As an 
example, imagine we had the task of adding functional test methods to an OOP application 

None 

Artefacts 

Requirements 

Design 

Code 

Objects 

Object #2 

Object #1 

Units 

Features 

F
e
a

tu
re

 #
1

 

Hyperplane defined 
by the Feature #1 
concern 



28 

that belongs to a hyperspace with only one non-default8 dimension: Features. Let us say these 
test methods all had to access internal state of existing objects to validate certain conditions. 
We would create a Test hyperslice with all the test methods required. But, we could not add 
the Test hyperslice to the Features dimension as it would overlap the hyperslices of features 
from which it accessed internal state. The Test hyperslice would not fit the Object dimension 
either. The Artefact dimension could be a choice, but we might want to consider tests as part 
of the programming artefact. If so, we had no choice but to create a new dimension to put our 
Test hyperslice in. 

3.2.2 Hypermodules 

Finally, after the hyperspace is decomposed, to create working blocks of software, a 
composition phase needs to take place. To execute this phase [Tarr99] introduces 
hypermodules. Hypermodules contain hyperslices (as depicted in Figure 1) and composition 
rules that dictate how to compose these hyperslices. These composition rules take units from 
different hyperslices in the hypermodule and from them create resulting units. The result of a 
hypermodule is then a collection of units. This result can be a complete piece of software, for 
example, a library, a service or a running program. The result can belong to a single artefact 
or span several artefacts. If, for example, the output of a hypermodule is a library, 
composition can generate a requirement document restricted to library functionality, design 
diagrams for the library, the library user documentation and the actual library code. But, the 
result of composition can also be incomplete, that is, it may contain references to units that it 
still does not contain, or it may fail to meet some other completeness constraint of the target 
formalism (or formalisms). In this case, the hypermodule can be used as any other hyperslice 
in new hypermodules. This is similar to how composed subjects can take the place of subjects 
in SOP composition.  

MDSoC composition is based on SOP composition. It is a three step process [Tarr99]: 

1. Matching: units inside concerns must be matched. 

2. Reconciliation: any conflicts between units must be resolved. 

3. Integration: the units must be transformed into a resulting unified unit. 

[Harrison93] discusses different approaches of matching classes between subjects in SOP, 
some are automated matching mechanisms. SOP, as defined in [Harrison93], only supports 
the composition (and thus matching) of classes. In the light of MDSoC, we could consider 
that classes are the primitive units of SOP as defined in [Harrison93]. [Ossher96] extends 
SOP to support the matching of methods and variables. The MDSoC model allows matching 
units at any level. The only restriction to matching in the MDSoC model is that the units 
being matched must be of the same level (for example, methods match methods but not 
classes). Hyper/J supports matching units down to the method level, giving Hyper/J the same 
matching capabilities that [Ossher96] proposed for SOP. But, contrary to SOP, Hyper/J does 
not support any kind of non-explicit unit matching. Nevertheless, MDSoC poses no detriment 
to supporting non-explicit unit matching. Curiously, SOP does not provide any reconciliation 
mechanisms and Hyper/J does not implement any for MDSoC either. The need for 
reconciliation is identified in [Tarr99] but no instantiation is made in MDSoC literature. 

                                                
8 Here, we consider dimensions that are automatically created in MDSoC, like the object dimension or the 
artefact dimension, to be default dimensions. Similarly, the none concern can be considered a default concern. 
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Finally, regarding integration, [Harrison93] already provided some integration mechanisms 
for SOP: namely merge and override integration. Override integration simply discards all the 
units being composed but one, which is the resulting unit. Merge integration will create a 
resulting unit that transparently uses all the units that were composed. Merge integration can 
optionally compose a result value from the partial results of each composed unit. These two 
integration mechanisms are implemented in Hyper/J, among others [Tarr01], and will be 
focused in detail in Section 5.1.  

[Ossher96] defines a formal model for SOP composition. As already stated, this model 
extends SOP composition from classes to methods and variables, in terms of matching and 
integration. Furthermore, [Ossher96] presents a rule model, already mentioned in Section 2.2. 
In this model, composition clauses express the matching and integration of units (classes, 
methods or variables) from different subjects. It would be possible to express all kinds of 
compositions in SOP only with composition clauses. But, frequently, the composition of 
classes, and sometimes entire subjects, uses the same composition clauses for all contained 
units (for example, match by name, integrate by merging). For this purpose [Ossher96] 
introduces composition rules that work as generators of composition clauses for units up to 
the entire subject level. A composition rule takes the place of as many composition clauses as 
there are matching units in the composed subjects. Composition clauses may still be used by 
themselves for expressing exceptions to the composition rule. [Tarr99] presents composition 
rules for MDSoC but does not define any lower level mechanism to express exceptions. A 
mechanism equivalent to SOP composition clauses, MDSoC composition relationships, is 
only defined in [Ossher99], within a formal model for MDSoC composition. The formal 
model in [Ossher99] is not extended with [Tarr99]’s composition rules. But, Hyper/J 
implements a model that is equivalent to the SOP model, mixing composition rules and 
composition relationships. Hyper/J relies primarily on composition rules and composition 
relationships can be used to express exceptions to composition rules. Each composition 
relationship, be it generated by a composition rule or expressed explicitly, identifies a set of 
units from the hyperspace (input units) and uses a composition function to transform these 
units into an output.  

3.2.3 SOP and the MDSoC hyperspace 

SOP and MDSoC share many similarities that have been described above. Nevertheless, SOP 
does not define any subject space like MDSoC defines the hyperspace for concerns. Even 
more importantly, SOP is specific to the code artefact in the OOP formalism and Subject 
Oriented Design is specific to the design artefact in the UML formalism. MDSoC defines a 
much more powerful model that can be applied to any artefact formalism and where artefact 
formalisms can coexist. Still the similarities are numerous, namely, the composition 
mechanisms of SOP and MDSoC are almost equivalent. 

Another difference between SOP and MDSoC is that MDSoC, when implemented for OOP 
(like in Hyper/J), does not require any kind of binding object like SOP’s object identifiers 
(oids). This is because MDSoC generates a composed result where a native entity (for 
example, a class) corresponds to the composed units. The composed result provides the 
operational “glue” that was provided by oids in SOP.  

While supporting different overlapping class hierarchies between subjects, SOP introduced 
the concept of flattening to avoid issues like the diamond problem and others. Flattening 
removes all inheritance information from the result of composed subjects. MDSoC does not 
propose any flattening mechanism and Hyper/J does not implement any either. Without 
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flattening, it would be interesting to know how MDSoC addresses the issues with multiple-
inheritance. [Ossher01] gives an example of the composition of two different overlapping 
hierarchies. As the example is composed using Hyper/J, and Java does not support multiple-
inheritance, there should be some kind of mechanism to determine the resulting inheritance 
hierarchy. Nevertheless, neither [Ossher01] nor the Hyper/J manual [Tarr01] provide any 
information in this regard. 

3.3 Using MDSoC: Examples 

3.3.1 The Expression SEE example 

Most of the MDSoC literature [Ossher99] [Tarr99] [Ossher00] [Tarr01] uses the same 
example to show how MDSoC should be applied to OOP and identify some of its inherent 
benefits. This example is presented as a Software Engineering Environment (SEE) with the 
respective requirements, design and code artefacts. The aim of the example is to represent 
expressions involving operations on variables and numbers. These expressions should then 
support several different features, such as being printed, evaluated and having their syntax and 
semantics checked. 

 
Figure 3. Class hierarchy used in the Expression example. 

 

At first, while presenting this example, MDSoC literature describes how it can be 
implemented in OOP without using MDSoC. Each expression component is a class, creating a 
class hierarchy with an Expression class as its root element (see Figure 3). For instance, there 
is a Number class that derives directly from the Expression class. Minus and Plus operator 
classes derive from a BinaryOperator class which then derives from Expression. Finally, 
there is a UnaryOperator class, also deriving from Expression, which is extended by 
UnaryMinus and UnaryPlus classes. This class hierarchy is common to [Ossher99], [Tarr99], 
[Ossher00] and [Tarr01]. Only with operator classes and a number/literal class, it provides no 
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support for variables. Nevertheless, this support is implemented, using a Variable class, in the 
demonstration code for this example that comes with Hyper/J9. 

Each feature is then implemented using a different method that needs to exist in most, if not 
all, of the defined classes. To evaluate expressions, an eval method, that returns the computed 
value for the expression, can be used. Expressions can be printed out using a display method. 
To check expressions there is also a check method that returns true if the expression is valid. 

There is no clear separation for the implementation of each feature. This way, removing a 
particular feature is not trivial. Introducing new features may require adding new methods to 
existing classes, but might also be more complex. [Tarr99] proposes the introduction of a 
persistence feature along with a style checker. Implementing persistence requires changing 
the constructor and properties of the Expression class hierarchy objects so these write any 
changes to their values to a persisted store. Applying design patterns to achieve a more 
decomposed implementation of this feature is possible but suffers from drawbacks described 
in Section 2.4. 

The style checking feature, also proposed in [Osher00] and [Tarr01], could be implemented 
using a new method. Still, [Tarr99] discusses how it would be possible to execute all the 
checks (syntax, semantic and style) through a single method. To achieve this [Tarr99] 
proposes the usage of a visitor design pattern for each kind of check. Like using design 
patterns for the persistence feature, this also has some of the drawbacks already discussed in 
Section 2.4. Eventually, a more adequate solution would be to implement a single check 
method in the Expression class. This method could invoke the desired different check 
methods and it would be a single point of change to obtain different combinations of the 
different types of checking. As this method is inherited by all other classes, invoking it for a 
particular class executes the different check types for that class. This solution is fully 
supported by inheritance but was not addressed by [Tarr99] or the remaining MDSoC 
literature which proposes a style check feature [Osher00] [Tarr01]. 

[Osher00] and [Tarr01] additionally propose the implementation of logging. This involves 
writing relevant information like entering or leaving a particular method, its arguments and 
return value. This non functional feature requires adding logging statements to all the methods 
in all the classes. Alternatively, an observer design pattern can be used, but it requires the 
introduction of notification invocations at the same points. This is yet another drawback of 
using design patterns that was already presented in Section 2.4. 

[Ossher99] proposes the introduction of a caching feature, to avoid having to re-evaluate the 
same expressions. A cached result variable can be introduced. When a first evaluation occurs 
this variable should be written. If an evaluation is requested and there is a cached result it 
should be directly used. This behaviour has to be implemented in the eval method, mixing the 
caching feature with the existing evaluation feature. Furthermore, like persistence, the caching 
feature requires changing class properties and constructors to invalidate a cached result 
whenever expression components are changed.  

The elements of MDSoC literature presenting the Expression SEE example go on to present 
how it is implemented using MDSoC and how this makes it much easier to extend with new 
features. They define a hyperspace with two dimensions. The first is the Object dimension 
and is already defined by the class hierarchy of the non MDSoC solution. Each class 
corresponds to one concern in this dimension. The second dimension is the Features 

                                                
9 A downloadable Hyper/J package that includes this example is available at 
http://www.alphaworks.ibm.com/tech/hyperj/download. 
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dimension. It is populated by concerns pertaining to the different features like display and 
evaluation. The Features dimension can be physically implemented or be created using virtual 
decomposition. It can even contain both physically and virtually decomposed units.  

[Tarr99] provides a physically decomposed model for the Features dimension. It uses only 
units from the design artefact as it does not address the code artefact directly. So, [Tarr99] 
presents class diagrams where the class hierarchy is replicated for each concern. The classes 
in the diagram for a particular concern contain only the members that address that concern. 
For instance, the classes in the Evaluation concern only contain the eval method whereas the 
classes in the Display concern only contain the display method. In some concerns the class 
hierarchy is not complete in regards to the original one because some classes are not relevant 
for that concern. This happens in the Evaluation concern where there is no general evaluation 
for unary or binary operators, so their children (Minus, Plus, UnaryMinus and UnaryPlus) 
derive directly from Expression. 

On the other hand, [Ossher00] and [Tarr01] focus on the code artefact and, using Hyper/J, 
implement most of the concerns in the Features dimension virtually. This is done by 
identifying the concerns to which the units belong. For instance, the eval methods in all the 
classes belong to the Evaluation concern. Similarly the display methods belong to the Display 
concern. These methods continue to exist in the original classes but are virtually mapped to 
these concerns in the Features dimension. This allows using the original OOP code in an 
MDSoC hyperspace, without changing it, but benefiting from MDSoC advantages as we will 
see further on. 

A third dimension, the artefact dimension, is explicitly addressed in [Ossher99]. Nevertheless, 
it is natively present in all Expression SEE descriptions simply because they contain separate 
requirements, design and code artefacts. 

 

Figure 4. Representation of the MDSoC hyperspace used for the Expression SEE example. 
 

Figure 4 represents the three dimensions used in the MDSoC hyperspace for the Expression 
SEE. Each dimension is represented with its own colour and indexed by its own concerns. As 
seen previously, this hyperspace is populated by code, design and requirement units using 
either virtual or physical decomposition. 

Back to the Features dimension, the Kernel concern is a common concern in many MDSoC 
hyperspaces. It provides basic constructors, properties and variables for all the classes 
involved. Other concerns may provide other constructors, properties and variables that are 
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particular to those concerns. The Kernel concern is present in all of the versions of this 
example in [Ossher99], [Tarr99], [Ossher00] and [Tarr01].  

As for checking concerns, [Tarr99] separates syntactic from semantic checking in different 
concerns, while [Ossher00] [Tarr01] has a single Check concern that addresses both types of 
check. In this last case, the Check concern contains a check method for all the classes in the 
hierarchy. In the case of [Tarr99], MDSoC composition is used to merge the check method 
from each checking concern. The merge is done so that the resulting method only returns true 
if both syntactic and semantic checks return true.  

One of the advantages of MDSoC presented with this example is the ability to mix-and-match 
different features creating different versions of the same application. For instance, with the 
hyperspace defined in [Tarr99], it is possible to remove either syntactic or semantic checking 
by removing the respective concern (which is a trivial task). 

Adding style checking to this example is also trivial. Style checking introduces its own 
concern in the Features dimension. The classes in this concern provide their own check 
method. Then, MDSoC merge composition is used to compose this concern with the other 
check concerns. In [Ossher00] and [Tarr01] this concern is implemented using a physical 
decomposition. Physical decomposition is usually better as it allows the programmer to work 
with decomposed code. The original feature concerns (Kernel, Evaluation, Display and 
Check) were not physically decomposed in [Ossher00] and [Tarr01] to avoid having to 
change the original OOP code, which was developed without MDSoC support. 

The caching feature [Ossher99] is implemented in MDSoC as a separate concern. As 
identified previously, the caching feature affects the eval method in all classes in the hierarchy 
and also their constructors and properties. This means the Caching concern overlaps the 
Kernel and Evaluation concerns in the Features dimension. It also overlaps all concerns in the 
Object dimension. When this happens with a new concern, it should be introduced into a new 
dimension. [Ossher99] proposes the introduction of a Caching dimension. We consider that a 
more general Non-functional requirements dimension might be more adequate, being prone to 
receive other related concerns. The Caching concern should contain constructors, properties 
and an eval method for each class in the hierarchy. These members only need to update or 
invalidate a local evaluation result variable. This Caching concern should then be used in a 
hypermodule that defines how it is composed with the evaluation and Kernel concerns. 
[Ossher99] does not provide any details about the composition of this concern. But, for 
instance, the constructors and properties can simply be merged with the ones in the Kernel 
concern. This concern was represented as part of the Features dimension in Figure 4 to avoid 
representing a four dimensional hyperspace. Placing this concern in the Features dimension 
may not be the most adequate approach but was followed for other non-functional 
requirements (persistence and logging) in [Tarr99], [Osher00] and [Tarr01]. 

[Tarr99] also proposes the implementation of persistence as a separate concern. It does not 
detail a particular solution for this feature, not even at design level. Yet, this concern is similar 
to the Caching concern. It also overlaps the Kernel concern and, optionally10, others, which 
provide state information that can be persisted, for instance, the check and even the 
Evaluation concern. As such, this concern should also be implemented in a different 
dimension. The Non-functional requirements dimension we proposed for the Caching concern 
is a good candidate. All the class members that are used to change or compute state 

                                                
10 It is discussable whether persisting state information that can be computed is a task for the persistence concern 
or the caching concern. [Tarr99] seems to defend it is a task for the persistence concern by proposing that it also 
persists the result of the check method. 
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information about expressions should be implemented in this concern. These members should 
simply save the new state information without executing any other tasks, like initializing 
variables or computing state information. Then, this concern should be introduced in a 
hypermodule, defining an adequate composition with the kernel and other concerns. 

The description of how to implement the logging feature with MDSoC [Osher00] [Tarr01] is 
more detailed than the description of the previous features. A specific Logging concern is also 
used. Logging method calls, with the respective entry and exit, affects the methods in all 
existing concerns. This could mean that the logging feature overlaps all other concerns and 
should be implemented in its own dimension. Nevertheless, in [Osher00] and [Tarr01], the 
Features dimension is used for the Logging concern. It would be more adequate to create this 
concern in the Non-functional requirements dimension.  

The Logging concern is implemented using the observer design-pattern. A call to a method 
entry handler is embedded into the beginning of existing method bodies. A similar call is 
embedded into the end of the same method bodies. Embedding these method handler calls is 
done using a new composition function implemented in Hyper/J: bracket. Bracket allows the 
introduction of method invocations before and after other methods (for more details see 
Subsection 5.1.2). The handlers simply write relevant method information to a log file. The 
Logging concern should be used in hypermodules that define the composition of these 
handlers with all the methods that need to be logged. 

3.3.2 Other examples 

[Ossher01] presents a different but similar example to the Expression SEE. The example 
consists of an employee class hierarchy that provides functionality (methods) that address two 
main features. The first is a personnel feature that keeps track of employee details. The second 
is a payroll feature and is centred around a pay method. Additionally, each feature has related 
business rules it needs to enforce. The example is implemented using MDSoC in a similar 
way to the expression example. The two different requirement groups are implemented in 
different concerns of a Features dimension. The Personnel concern is similar to the Kernel 
concern in the expression example and contains constructors and properties for the employee 
classes. Additionally, a Business Rules dimension contains concerns that implement particular 
business rules, each in its own concern. This separates the business rules from the features 
they are related to. 

Both the expression and employee examples consist of a single class hierarchy where all the 
classes share a common set of methods. Each method offers the functionality of a particular 
feature or accumulates functionality from different features. Each method can also be affected 
by non-functional requirements.  It can be argued that these examples are too specific and, by 
sharing the characteristics presented, do not capture a wide range of application types. For 
instance, the examples do not capture applications containing several different class 
hierarchies which are not interrelated by inheritance but by reference. Nevertheless, this does 
not mean that different application types can not equally benefit from MDSoC. It only means 
that different examples of using MDSoC should be studied to achieve a wider validation 
ground for the benefits of MDSoC. 

There are also real-world examples of MDSoC usage. One such example was the 
implementation of the GNU sort application using Hyper/J [Carver02]. MDSoC has also been 
applied to several fields in computing, namely web service composition [Hailpern01] 
[Arsanjani03] and middleware [Rouvellou00]. As for other fields, it has been used in the 
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design of hardware embedded systems [Stuikys02], in music composition [Hill06], to cope 
with the complexity of regulatory text bodies [Lasky03] and in sustainable architecture and 
urban planning [Lourenci02]. [Lourenci02] provides a particularly interesting perspective on 
MDSoC.  

3.4 Conclusions 

MDSoC is an evolution of SOP that has acknowledged the multiple dimensions in which 
subjects (or concerns) can be organized. In MDSoC, these dimensions are supported by a 
structure called hyperspace. Hyperspace is made-up of concerns that are contained in 
dimensions. Concerns contain units from different software artefacts and/or formalisms. This 
makes MDSoC a cross-artefact model. MDSoC is also based on two stages: decomposition 
and composition. In the first stage, units are placed, physically or virtually, inside concerns of 
the hyperspace. In the second, sets of units are matched and composed according to 
composition rules and relationships. Like SOP, MDSoC adopts composition strategies defined 
in composition rules and allows expressing as many exceptions to these as required. 

Finally, we used the Expression SEE example to demonstrate a set of features that severely 
benefit from being implemented using MDSoC.  
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Chapter 4  

 

Technological background 

This brief chapter presents an overview of the technological background required for the 
chapters that follow. First, the Java programming language is very briefly addressed. This will 
help readers not acquainted with Java cope with Section 5.1, about Hyper/J, which is an 
MDSoC implementation for Java. 

The core of this chapter is a slightly more detailed description of the Microsoft .NET 
Framework and its languages. It then focuses on .NET partial types, which is an important 
feature in regards to MDSoC, as Section 6.1 will show. 

Hyper/Net, the MDSoC implementation developed to help support the thesis documented 
herein, adds MDSoC support to Microsoft .NET languages. Hyper/Net was integrated with 
two .NET Interactive Development Environments (IDEs), SharpDevelop and Microsoft 
Visual Studio. These are also addressed here.  

This background information on Microsoft .NET will also help with Section 5.2, on HyperC#. 

4.1 The Java programming language 

Java is an OOP language based on C and C++. Its first version (1.0) was released in 1995 by 
Sun Microsystems. Java did not adopt most C and C++ low-level facilities, namely pointer 
manipulation. With its minimalist design, Java also does not offer support for other common 
OOP features, such as multiple-inheritance [WikiJa]. 

Java programs can use a set of common functionality from standardized Java libraries. These 
provide access to system functionality like user interfaces, networking, etc. One interesting 
point is that these libraries are equally available in all platforms that support Java programs. 
In fact, Java programs are not compiled into native machine code but into an intermediate 
language: Java bytecode. Java bytecode programs are usually compiled into native code at 
runtime, as needed, by a Java Virtual Machine. There are Java Virtual Machines for almost all 
platforms. This makes Java programs portable across platforms. 
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Java was originally closed source, but was freely available for use. As of May 2007, Sun 
Microsystems publicly released Java’s compilers, virtual machine and other tools, officially 
making Java an open-source, community project.  

4.2 Microsoft .NET Framework 

The first version of the .NET Framework was released in early 2002 [WikiNF]. It was 
introduced with the intention of providing a common framework for Microsoft’s 
programming language implementations.  

An important part of the .NET Framework is its Base Class Library (BCL). It provides 
common functionality in areas like data access, user interfaces and networking, among others. 
Programs developed in any .NET language can use the BCL. In fact, it is available in the 
same way from all .NET languages. 

The .NET Framework also manages the execution of programs written for the framework. 
This support is offered, usually at runtime, using virtual machine technology. The .NET 
Framework includes a virtual machine that translates a .NET intermediate language (the 
Common Intermediate Language – CIL) into the machine language of each platform (see 
Figure 5). The resulting machine code is what ends up being executed. Like the Java Virtual 
Machine, this provides independence from the architecture of each platform that .NET 
programs run on. 

 

Figure 5. Typical .NET compilation and runtime process. 
 

Like Java, the .NET Framework also supports an intermediate byte-code language (the CIL) 
using a virtual machine model. Also like Java, the .NET Framework offers a set of common 
functionality through system libraries, like the Base Class Library (BCL) [WikiNF]. Yet, the 
.NET Framework takes these advantages one step further than Java by supporting .NET in 
multiple languages. Each .NET language needs only to have a CIL compiler that translates it 
to the CIL. This is of crucial importance for the adoption of the framework. Any existing 
language, in particular OOP languages, can be ported to a .NET variant. An immediate 
advantage is having direct access to system functionality through the BCL, allowing language 
implementers to concentrate on language features instead of system integration features. At 
the time of writing, .NET supports more than 30 different programming languages, most of 
which were developed by parties other than Microsoft [WikiNL]. In comparison to Java, the 
.NET Framework falls short on portability, as Microsoft only offers an implementation for 
Microsoft Windows platforms. There are open-source efforts (like Mono) to provide cross-
platform support for the .NET Framework, but .NET support is not complete, namely 
supporting only part of the BCL [WikiNF]. 

The .NET Common Intermediate Language (CIL) is object oriented. It natively supports 
features such as class inheritance and polymorphism [Thai03]. It also instantiates a particular 
set of language entities from common OOP concepts: 
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� Classes – can be considered the most important entity in the CIL. All other programming 
elements must belong to classes, with the exception of interfaces. 

� Interfaces – declare a set of member signatures (methods, properties, etc.) that must be 
implemented by classes that derive from the interface. 

� Methods – are the main implementation point for functionality. Methods must belong to 
classes and can be declared in interfaces. A method is identified by its signature: its name; 
set of parameters types and return value type. 

� Fields – represent class member variables. 

� Properties – are similar to fields but provide greater encapsulation by being accessed 
through getter and setter methods. 

� Events – provide a native implementation of a synchronous observer design-pattern. 

� Namespaces – serve as a modularization tool, separating different types inside a CIL 
module according to any desired criteria. 

The CIL language entities are enhanced with another set of standardized language entities. 
These are defined as part of the .NET Common Type System (CTS) and can be mapped to 
CIL objects [Ecma02]. They are: 

� Exceptions – which are particular classes (deriving from System.Exception) that can be 
used when errors occur. 

� Enumerations – which are special types that contain a set of named constants. 

� Indexers – which are operators that allow accessing objects as if they were arrays.  

� Delegates – which are a type-safe version of the function pointers from other languages, 
like C. Delegates define a method signature type11 which can be used to declare invocable 
variables. These variables can be associated with any methods with the appropriate 
signature [Thai03]. 

� Attributes – which are particular classes (deriving from System.Attribute) that can be 
applied to most language elements to provide metadata on them. Some attributes have a 
specific semantic value for the CIL and are provided with the .NET BCL. Custom 
attributes can be created by extending the System.Attribute class [Liberty01]. 

Exceptions are already class types at CTS level, and so should also be classes in .NET 
languages. Enumerations and delegates are converted into class types for the CIL.  

Delegates and exceptions are class types in the CIL. Nevertheless, the CIL validates delegates 
according to particular rules and needs to provide native support for exception handling 
[Ecma02]. Additional information about these particular types needs to be provided to the 
CIL in the form of metadata. Attributes are also introduced into this body of metadata. 

All .NET languages must implement the .NET Common Type System (CTS). It is noticeable 
that the CIL and the CTS strongly influenced the design of the C# and VB.NET languages. 

                                                
11 Here the method signature is defined without the method name. 
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The entities that exist in both languages are exactly the ones supported by the CTS. Each of 
these .NET languages is focused in slightly more detail in the two following Subsections. 

4.2.1 The C# programming language 

C# is an OOP language developed by Microsoft and approved as a standard by the ECMA 
and ISO organizations [WikiCS]. The first version of C# (C# 1.0) appeared in 2001, just 
before the official release of the first version of the .NET Framework. C# is based on C++ but 
also includes elements from Delphi and Java. The most relevant C# design goal is simplicity. 
Like Java, C# was chosen not support multiple inheritance. C# implements a unified type 
system rooted in the Object class. Unlike Java, in C#, primitive types, like integers, booleans 
and so on, are also part of this type system by extending the Object class. The unified type 
system is not particular to C# but is a consequence of the .NET Common Type System (CTS). 

4.2.2 The VB.NET programming language 

The Visual Basic .NET, or VB.NET, programming language is an evolution of Microsoft’s 
Visual Basic to support the .NET Framework. Visual Basic is an event driven programming 
language. It is used mainly for rapid application development (RAD) of user interfaces and 
reusable components (COM objects) in the Windows platform [WikiVB]. VB.NET retained 
part of the Visual Basic syntax and the event driven capabilities, using .NET Framework 
delegates and events, but became a full-fledged OOP language equivalent to C#.  

4.2.3 Partial Types 

As part of a set of new language features, Microsoft introduced partial types with the C# and 
VB.NET 2.0 language definitions in 2005 [CSharp05]. Partial types use a type modifier 
(partial) that enables separating type definitions throughout as many files as desired. Listing 1 
and Listing 2 exemplify the usage of partial types to implement two different methods (Eat 
and Sleep) for the same class (Fish) in separate files. When the two listings are compiled, 
there will be a single Fish class providing the two implemented methods, as if they had been 
defined inside a single class in one file. 

partial class Fish 

{ 

    public void Eat(IEdible food) {…} 

}  

Listing 1. Declaration of the Fish partial class in the first file, using C#. 
 

partial class Fish 

{ 

    public void Sleep(int minutes) {…} 

} 

Listing 2. Declaration of the Fish partial class in the second file, using C#. 
 

Partial types allow defining different members of the same type separately, eventually in 
different files. The partial modifier can only be applied to classes, structs and interfaces. It is 
not valid for delegates or enumerations [CSharp05]. 
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Currently, the most common usage for this feature is separating tool-generated code from 
human-generated code for the same class. By generating classes with a partial modifier, 
members can manually be added to them in separate files. This enables each class to be 
regenerated using the tool without overwriting the human-generated portion of the class 
[CSharp05]. This is particularly useful when extending the tool-generated class is not a valid 
option. [CSharp05] also proposes the usage of partial types to allow different programmers to 
work on the same type separately. 

[CSharp05] goes on to provide important implementation details that determine how partial 
types can be used: 

� The partial types for a particular type must all be defined under the same namespace. Two 
partial types with the same name, defined in different namespaces, are defining different 
types, each belonging to its respective namespace. 

� All the parts of a type that uses partial types must be declared partial and must have the 
same accessibility; for instance, all are public or all are private.  

� If any of the partial types of a particular type is defined as abstract, the resulting type will 
be abstract.  

� Each partial class can extend another class. Still, all of the different partial classes, for a 
particular class type, that extend a class, must extend the same class. If at least one partial 
class extends another class, the resulting type will also extend that class. 

� Partial types are composed into a type (by a .NET compiler) in an additive fashion: 

o All the members defined in each partial type with exist in the resulting type.  

o Any interfaces implemented by a partial class or extended by a partial interface 
will also be implemented or extended by the resulting class or interface 
(respectively).  

o Any class attributes that are applied to a partial type will also be applied to the 
resulting type. 

o Any XML comments that applied to a partial type will also be applied to the 
resulting type. 

� All partial types of a particular type must belong to the same assembly and module. 

Even though .NET, in particular the C# language, has adopted many of its language features 
from Java, there is no equivalent to partial types in Java. 

As we will see, from Chapter 6 onwards, partial types can be used to achieve separation of 
concerns. Nevertheless, references about this usage for partial types are scarce. [Hirschfeld03] 
briefly discusses how partial types are expressively more limited than Aspect Oriented 
Programming (another composition approach) for addressing separation of concerns. 
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4.2.4 SharpDevelop 

SharpDevelop is an Integrated Development Environment (IDE) for .NET. The task of an IDE 
is to streamline the process of programming. By also offering support for related tasks like 
designing, testing or documenting, IDEs tend to be the tool of choice for streamlining the 
entire software development process. 

The SharpDevelop IDE supports the two main .NET programming languages, C# and 
VB.NET. It also supports the Boo programming language which is an OOP language based 
on Python. SharpDevelop itself is developed using C# and runs on the .NET Runtime. It is an 
open-source project and is free to use. 

The first chapter of [Holm03] provides an overview of the SharpDevelop functionalities. 
Some of that information is outdated and had to be reconciled with updated data from the 
SharpDevelop website [SharpDevelop07].  

SharpDevelop provides common source code editing features like search and replace and 
syntax highlighting. Dynamically, while users are writing code, SharpDevelop provides code 
completion suggestions based on the source code context. For instance, while starting to write 
the name of a method invoked from a class, SharpDevelop provides a list of all methods in the 
class that start with the characters already written. The programmer does not have to finish 
writing the method name and can choose it from the list. Another SharpDevelop feature that is 
related with code completion is called method insight. While the programmer writes the 
invocation of a particular method, SharpDevelop provides information about the required 
arguments, highlighting the current argument while it is typed. SharpDevelop also supports 
integrated debugging. It allows breakpoints to be defined in the source code and uses them in 
interactive debug sessions. 

Another important concept managed by IDEs is the concept of programming projects. 
Projects act as source code aggregators. They contain related source code files that should be 
compiled together, along with other elements, like resources: images, localized text strings, 
etc. Projects also simplify the source code build process, allowing an entire project to be built 
with a single click. Any errors during the build process can be presented to the programmer 
inside the IDE and he/she can navigate to their source. SharpDevelop fully supports several 
different kinds of project files, namely the MSBuild project files used by Visual Studio, which 
is the main, commercial, .NET IDE.  

A particularly interesting feature of SharpDevelop is that it provides the possibility of 
translating programs in any supported language into any other supported language. This 
feature is supported by a parser that is part of NRefactory, which is addressed further on. 

Another area where IDEs tend to provide solid support is on Rapid Application Development 
(RAD) for interfaces. SharpDevelop provides visual tools to create Windows Forms and Web 
Application (ASP.NET) interfaces. 

Finally, SharpDevelop provides important extension and integration features that allow more 
functionality to be plugged-in through separate modules. Such integration features are used to 
plug-in external tools like, testing and code-coverage frameworks (NUnit and NCover) or 
documentation tools (like NDoc). Several other plug-ins exist and many are under 
development.  
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NRefactory 

Despite the name, NRefactory is a C# and VB.NET source code parser. It is used internally by 
SharpDevelop, mainly for source code translation. After parsing source code, NRefactory 
allows the manipulation of its Abstract Syntax Tree (AST), providing a programming 
interface for manipulating code [NRefactory05]. The contents of the AST can be converted 
back into textual source code, in any of the two supported languages. NRefactory only 
supports processing a single source code file at a time.  

4.2.5 Microsoft Visual Studio 

Microsoft Visual Studio is the first and best known IDE for the .NET Framework. It is a 
commercial product developed by Microsoft and is closely related with the development of 
the .NET Framework. Usually, the IDE support for new .NET Framework versions is 
simultaneously made available in the form of new Visual Studio versions or updates.  

Visual Studio heavily inspired SharpDevelop. Most of its features were based on similar ones 
that are available in Visual Studio. Since its origins, Visual Studio offers Intellisense, which is 
one of the first code completion features to be available in an IDE [WikiIS]. Visual Studio 
2005 introduced its own test projects, offering unit testing facilities that are closely based on 
NUnit. Another feature of Visual Studio 2005 is the Class Designer. It offers the ability to 
create class diagrams from existing code or from scratch. The most interesting aspect of the 
Class Designer is that class diagrams are dynamically synchronized with the source code. 
Changes made in the class diagram take immediate effect in the source code and vice-versa 
[Stoecker04]. This way, class diagrams not only serve to represent code, but provide a higher 
level code interaction mechanism. We use Visual Studio generated class diagrams extensively 
throughout this document. 

Visual Studio has its own XML project format (MSBuild) and supports several different types 
of projects. Each type of project is adequate for a particular architectural role. For instance, 
there are ASP.NET web application projects that can expose user interface functionality 
through a web interface and need to be supported by a web server. Windows forms projects 
allow creating rich Windows client applications. Simpler project types are also supported. 
Console application projects can be used to develop command line applications which offer 
very limited used interaction facilities. Class library projects allow implementing software 
modules offering functionality that can be used from other projects. Most medium to large 
projects need to rely on several class library projects. Visual Studio project types are simply 
templates that configure .NET projects and introduce sample code in a way that is appropriate 
for each scenario. Most Visual Studio project types are similarly supported in SharpDevelop. 

4.3 Conclusions 

Java and the .NET Framework have a lot in common. Both are centred on OOP languages and 
concepts, provide vast libraries for access to system functionality and implement a cross-
platform virtual machine environment. One .NET feature that does not exist in Java is .NET 
partial types. .NET partial types allow scattering a class definition throughout as many 
different files as required. Another important element in the adoption of both platforms is how 
they are supported in IDEs that streamline the developers work. With a powerful set of 
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development support and guidance tools, IDEs tend to be used during the entire development 
process. Some of these tools and features, like project files, code completion and testing tools, 
will be revisited further on. We will also be revisiting NRefactory, which is a C# and VB.Net 
source code parser. 
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Chapter 5  

 

MDSoC implementations 

The conceptual model of MDSoC is very promising as analysed in Chapter 3. Yet, without 
implementations it would be nothing more than a model. This chapter presents two existing 
MDSoC implementations that can be used by developers. Hyper/J is the first MDSoC 
implementation and works with the Java language. HyperC# is a more recent project that can 
be used with the C# language. Each section of this chapter focuses one of these 
implementations. It presents their features, usage scenarios, bridges them to the MDSoC 
model and summarizes their limitations. Another MDSoC implementation, developed by us, 
is called Hyper/Net and is presented in Chapter 6.  

As noted, the MDSoC implementations presented here only address the code artefact. 
Curiously, there are many other MDSoC implementations and processes that address the 
design artefact [Herrmann00] [Memmert02] [Philippow03] [France03], the architecture 
artefact [Kande00] [Kande03] and the analysis artefact [Sutton02] [González05]. These are 
not analysed here as our aim with this chapter is to provide comparison grounds for 
Hyper/Net, which does not address design or analysis artefacts. A comparison between the 
three MDSoC implementations for the code artefact (Hyper/J, HyperC# and Hyper/Net) is 
done in Section 9.2. 

5.1 Hyper/J 

Hyper/J instantiates the MDSoC model for the Java language. It is the first implementation of 
MDSoC and was developed by the authors of the MDSoC model [Tarr01]. Hyper/J works 
with Java class files as input and also outputs Java class files [Ossher00]. It is a post-
compilation, pre-runtime composition tool. 

Along with input class files, Hyper/J uses three different metadata files [Ossher00] [Tarr01]. 
One of the files defines which units from input class files are used in hyperspace (project 
specification). Another defines dimensions and their concerns, and how the units in 
hyperspace populate these concerns (concern mapping). Finally, hypermodules are also 
defined in their own files. Hypermodule files identify the set of concerns/hyperslices used and 
how these are composed using composition rules. Once created, these metadata files can be 
reused in new compositions. For instance, to create a different hypermodule for the same 
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hyperspace, the project specification and concern mapping files can be reused with a new 
hypermodule file. 

Java developers may or may not have in mind that their code will be used in a particular 
hyperspace. Hyper/J supports both scenarios. Furthermore, it can even be used when there is 
no source code available at all, as it works directly with class files. In all situations, Hyper/J 
requires no intrusive changes to existing code to place it in a hyperspace and then use it in 
compositions [Ossher00]. 

Hyper/J uses the hyperspace definition along with a hypermodule to create output class files. 
These output class files are the result of Hyper/J composition and can be reused in new 
compositions or, if complete, as a running program. 

Hyper/J implements MDSoC limited to a single artefact (code) and a single formalism of this 
artefact: the Java language. 

Packages, interfaces, classes, their members (like methods and fields) and statements are Java 
language units. Hyper/J offers composition constructs for all of these units except for 
statements [Tarr01]. Decomposing class members into statements is pointless as Hyper/J 
offers no means to compose the resulting statements into class members again. Yet, class 
members can usually be decomposed into sets of equivalent, usually smaller, class members. 
For instance, a method can be decomposed into methods with the same signature, each 
holding only part of the original method body. Contrary to decomposition into statements, 
decomposition into equivalent class member types is useful, as Hyper/J offers composition 
constructs for class members. This way, class members are the smallest decomposable units 
but, at the same time, also primitive units of a Hyper/J hyperspace. Class members are 
primitive units because they are the smallest units resulting from decompositions for use with 
Hyper/J. This makes packages, interfaces and classes compound units. 

Class members in this approach can be seen as a particular case of a wider scenario where the 
decomposition of a unit always results in a unit of the same type. If this kind of unit is not 
further decomposable into smaller granularity units, it will still be considered a primitive unit, 
even though it is decomposable. This can be considered as an exception to the definition of 
primitive units from Section 3.2. 

5.1.1 Dimensions, concerns and hyperslices 

Through the project specification file, Hyper/J allows the declaration of all the units that are 
included in each hyperspace [Tarr01] (Subsection 4.2.1). These files contain directives which 
identify specific classes or interfaces. Some directives identify single classes or interfaces. 
Others are more powerful and allow the inclusion of the entire set of classes and interfaces 
inside a package or a file-system directory. Pattern matching can be used to filter the included 
units. In Hyper/J, not all classes and interfaces included in a hyperspace are composable. The 
directives in the project specification file also allow defining which classes and interfaces are 
composable and which are not. Any classes that are referenced by classes introduced into 
hyperspace are automatically introduced into hyperspace by Hyper/J. Yet, these are defined as 
not composable by default. If required, introducing these referenced classes explicitly allows 
them to be composable. 

Compound units other than packages must be introduced whole into hyperspace. Primitive 
units can only be introduced into hyperspace as part of a compound unit. For instance, a class 
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member cannot be introduced into hyperspace by itself. Its entire containing compound unit 
(the class) must be introduced. It is not possible to define that part of a compound unit cannot 
be used for composition while the remaining can. To introduce a particular compound unit 
member without introducing the remaining members of the unit, it must be decomposed 
before being introduced into hyperspace. A new compound unit should be created with only 
the members that are to be introduced into hyperspace. Of course this decomposition is 
subject to the completeness constraints that allow the compilation of the compound units 
involved. This issue is further discussed ahead in this section.  

After units are introduced into hyperspace they must be matched to the adequate concerns. 
Hyper/J uses the concern mapping file to declare hyperspace dimensions with concerns and 
match units to these concerns [Tarr01] (Subsection 4.2.2). Hyper/J implements the most 
limited hyperslice model where hyperslices are equivalent to concerns. This model was 
proposed in [Tarr99]. As we will see, this is also the model used in the other MDSoC 
implementations (HyperC#, see Section 5.2, and Hyper/Net, see Chapter 6).  

Hyper/J automatically creates a Class File dimension from the set of units introduced into 
hyperspace using the project specification. Each class introduced into hyperspace has its 
respective concern in this dimension. Each respective hyperslice is populated by the 
appropriate class and its members. The Class File dimension allows the visualization of 
hyperspace from the classic perspective of OOP. 

Concern mapping files are used to describe how the units that were previously introduced into 
hyperspace are mapped to concerns. This populates the corresponding hyperslices. Different 
types of units can be mapped to concerns. In fact, all kinds of compound and primitive units 
in Hyper/J hyperspaces can be mapped. Each mapping is declared by identifying a unit and its 
target concern (in a particular dimension). The order of declaration is important. A unit that 
has already been mapped to a concern can be declared in other mappings. If these declarations 
map the unit to concerns in the same dimension of previous declarations, the previous 
mappings are dropped and this new one is introduced. Otherwise, the unit is mapped to all 
other declared concerns, given they do not have any dimensions in common. This way, units 
can be mapped to more than one concern but cannot be mapped to different concerns in the 
same dimension. There can be mapping declarations for units that are contained in compound 
units that were already mapped themselves. In such cases, the units contained in compound 
units are only mapped to the concern of their specific declaration. This overrides the mapping 
imposed by their containing compound unit. It allows units contained in compound units to be 
mapped to concerns different from the one the compound unit is mapped to. 

There is no explicit declaration for concerns and dimensions. Concerns are implicitly declared 
as the target of unit mappings. That is, if a new mapping references a non-existing concern, it 
is created. Furthermore, if the dimension of a new concern does not exist, it is also created. 
The model for MDSoC dimensions defined in the beginning of Section 3.2.1 determines that 
each dimension must contain all units. To achieve this, Hyper/J automatically creates None 
concerns in each dimension and populates them with the units that are not mapped to any 
concerns in the dimension. It is also possible to explicitly introduce units into None concerns.  

In terms of the hyperslice implementation approach, as described in Subsection 3.2.1, Hyper/J 
supports all three hyperslice implementation approaches. Code can be physically decomposed 
by the developer before being introduced into hyperspace. It can also be used without any 
decomposition at the code level, by mapping units to the appropriate concerns. The hybrid 
approach is thus possible by mixing the two approaches. This is expected to be the most 
frequent approach. With it, all physically decomposable units can be decomposed in the 
source code. Yet, any units that are not physically decomposable can be mapped to more than 
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one concern in hyperspace. [Tarr01] proposes that physical decomposition should be done 
whenever possible. 

Physical decomposition will bring severe advantages for developers, who will be able to 
manipulate decomposed code organized into concerns. Nevertheless, there may be some 
disadvantages of prioritizing physical decomposition. Units of code that is physically 
decomposed can still be used in different hyperspaces. If the dimensions of those hyperspaces 
are severely different from the dimensions used to decompose the original code, mapping 
might be difficult. Furthermore, hyperspace organization may change. A physical 
decomposition approach is harder to adapt to these changes than a virtual mapping approach. 
Nevertheless, these disadvantages are not significant when compared with the great advantage 
of having developers manipulating units as they are organized in hyperspace. 

Hyper/J does not implement physical decomposition by itself, but it can rely on OOP 
decomposition to achieve this physical implementation. [Tarr01] (Subsection 4.3.1) proposes 
and promotes the use of a particular physical implementation for hyperslices: “Hyperslice 
Packages”. In this implementation, each hyperslice will have a corresponding package in the 
code. As these packages (hyperslices) must be compiled prior to composition using Hyper/J, 
the Java compiler imposes a completeness constraint for each package. The units referenced 
from each hyperslice package must exist in the compiled code. Units outside of the hyperslice 
package can be referenced from other packages that offer them. [Tarr01] advises against this 
approach and proposes that each hyperslice package should instead be declaratively complete. 
The declarative completeness of each hyperslice package guarantees that it will compile 
without problems even if compiled without any other packages. Thus, declarative 
completeness achieves the requirements of the completeness constraint imposed by Java 
compilation. 

[Tarr01] (Subsection 4.3.2) presents a process for achieving declarative completeness. It can 
be used in a physical decomposition model with hyperslice packages or in a virtual 
decomposition model, by matching the appropriate units to each concern/hyperslice. 
Declarative completeness in a hyperslice is achieved by introducing declarations for all units 
that are referenced and do not belong to the hyperslice. These declarations can be introduced 
as abstract units, which limits their use, or, in the case of operations, as operations that throw 
a predefined Hyper/J (unimplemented) exception. [Tarr01] does not present a way of 
introducing field declarations and Java does not offer abstract field declaration. 

5.1.2 Hypermodules 

Finally, Hyper/J uses a hypermodule specification file to define composition and achieve 
composed output [Tarr01] (Subsection 4.2.3). Each hypermodule specification file identifies 
the set of hyperslices used for composition, along with a composition strategy and other 
adequate relationships. Hyperslices are explicitly identified by name. Nevertheless, the 
identification of hyperslices in each hypermodule declaration file is optional. When this 
identification is not done, the hypermodule will contain all hyperslices in hyperspace, except 
for the hyperslices of None concerns and hyperslices in the Class File dimension. 

Hyper/J offers three different composition strategies: mergeByName, 
nonCorrespondingMerge and overrideByName. Each composition strategy defines a different 
composition rule with its own combination of composition function and different way to 
match input units. Each composition strategy is detailed further on. Only one composition 
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strategy is allowed per hypermodule, so each hypermodule only has a composition rule. 
Hypermodules may include as many exception composition relationships as required.  

Hyper/J composition strategies can match units in two different ways: ByName and None. 
With None, no units are matched and composition relies only on exception composition 
relationships. Each unit in the input hyperslices is simply output on its own, unless it is part of 
an exception composition relationship. With ByName, units are matched with units of the 
same unit type (classes with classes, interfaces with interfaces, and so on) that have the same 
name. If the direct container of a compound unit is a package, this compound unit is matched 
(by name and unit type) without regard to its containing package12. As for the remaining 
units, they are only matched if their containing compound units match or are the same. Yet, 
this matching function is not recursive. Composition functions are in charge of further 
matching units inside matched compound units. 

The three composition strategies use two different composition functions: Merge and 
Override. Merge can be applied to sets of compound units of the same unit type. In this case it 
generates a single compound unit of that unit type containing the union of all units contained 
by the input compound units, except for any units which also match. These contained units 
that match are merged and the result is output to the generated compound unit. For example, 
two matching classes (Fish1 and Fish2), each containing a Breath method, will be merged 
into a single class with a Breath method, that results from merging the two Breath methods. If 
Fish1 has a Swim method and Fish2 does not, the resulting class will have the Swim method 
from Fish1.  

Merge can also be directly applied to primitive units. In the case of methods it generates a 
method that is equivalent to calling all of the matching input methods. The return value of 
each input method is also merged. By default the merged method returns the return value that 
would be obtained by invoking the last input method. It is also possible to define that a 
particular Merge composition function uses a summary function to compute the merged return 
value. In this case the return of the merged method is computed from each return of the input 
methods using the desired summary function. Hyper/J only allows declaring a summary 
function when Merge is used as the composition function of exception composition 
relationships and not as part of the composition strategy. These summary functions must be 
static and exist in the result of composition. 

The order of the input units provided to composition functions is important. In the case of 
Merge, this order determines the order by which input methods are invoked in the resulting 
composed method. The order of input units is equivalent to the order of declaration of their 
containing hyperslices in the hypermodule. Between two units, the one that will come first is 
the one that belongs to the hyperslice which was declared first in the hypermodule. This order 
is only changed by the Order construct, introduced in hypermodule declarations as a specific 
relationship. The Order construct dictates explicitly that a particular unit precedes another, 
overriding any order obtained from the corresponding hyperslice declaration order. 

The Override composition function for compound units is equivalent to Merge. It is also 
recursive and has its distinguishing result only when applied to primitive units (directly or by 
recursion from compound units). In such case, the Override composition function outputs 
only the last primitive unit from the tuple of input units. As such, ordering is even more 
critical for override composition. 

                                                
12 If this did not happen, no matching would be achieved. Java compilation already matches packages with the 
same name. Furthermore, it does not allow the declaration of units of the same unit type with the same name 
inside the same package. 
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Each composition strategy provided by Hyper/J implements a different composition rule with 
a different set of matching and composition functions: 

� mergeByName uses the Merge composition function and the ByName matching function.  

� nonCorrespondingMerge uses the Merge composition function and the None matching 
function. This is equivalent to defining no composition rule and that the default function 
used in exception composition relationships is Merge. 

� overrideByName uses the Override composition function and the ByName matching 
function.  

Each hypermodule only defines one composition rule but can define as many exception 
composition relationships as required. All types of units, except for packages, can be involved 
in exception composition relationships. In Hyper/J, entire hyperslice composition is only 
achieved using composition strategies. Exception composition relationships provide a smaller 
granularity composition mechanism at class level and below. The input units of each 
exception composition relationship must be units of the same unit type. Their order follows 
the same rule used with composition rules, that is, the order of hyperslices with exceptions 
introduced by the Order construct. Different kinds of exception composition relationships can 
be expressed using a set of Hyper/J relationship constructs: 

� Equate is used to match units that are not matched by the composition strategy. The input 
units are explicitly identified. The composition function used is the one defined by the 
hypermodule composition strategy. 

� Match is equivalent to Equate but allows units to be identified using pattern matching, 
instead of needing to be identified explicitly. This way, with match, the input units depend 
on the units present in the hypermodule’s hyperslices that match the specified pattern. The 
remaining behaviour is the same as for equate. 

� Merge imposes a Merge composition function to a set of explicitly identified input units.  

� Override imposes an Override composition function to a set of explicitly identified input 
units.  

� NoMerge imposes an equality composition function13 to a set of explicitly identified input 
units. This way, NoMerge can be used to avoid applying the hypermodule composition 
function (Override or Merge) to a set of matching units. NoMerge has no effect in 
hypermodules that use a nonCorrespondingMerge strategy. 

� Bracket introduces a new composition function, also called Bracket. Bracket changes a set 
of methods to additionally call a before method, before running their body, and call an 
after method, at the end of their execution. The input units are the methods that should be 
bracketed along with the before and after methods. The methods that should be bracketed 
are identified using pattern matching. Additionally, Hyper/J allows specifying that these 
methods are only bracketed when called from a specific context: a call-site. Only one call-
site is allowed but it can be anything, from a hyperslice to another method. The Bracket 
composition function is limited to method unit types. 

                                                
13 The output unit of an equality composition function contains all of the units in the input tuple, and only these. 
An equality composition function can be recursively applied to a set of units time and again without ever 
changing them. 
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5.1.3 Usage and reuse 

Due to its characteristics, Hyper/J allows heterogeneous usage scenarios, namely: 

� Being used to decompose existing code (though the decomposed form cannot be output as 
code). 

� Introduce new features, developed in a decomposed form, into existing indecomposed 
code. 

� Use compiled Java programs to compose with custom code, or even composing amongst 
themselves. 

� Creating different flavours of an application by removing specific concerns and 
introducing new ones (mix-and-match functionality). 

Furthermore, one of the aims of MDSoC is to promote reuse. Hyper/J satisfies this 
requirement by allowing both hyperslice and hypermodule reuse. Hyperslices can be used in 
any hypermodule created for the hyperspace they populate. Hyperslices can also be reused in 
different hyperspaces. In this case it is best to have physically decomposed hyperslices, 
namely, using the hyperslice package approach. Otherwise, introducing the hyperslice into the 
new hyperspace will require identifying the physical units of the hyperslice again and 
matching only these to the hyperslice in the new hyperspace. 

Hypermodule reuse is achieved by introducing the output of a hypermodule into a hyperspace. 
This must be done explicitly. Furthermore, as hypermodules output compiled class files, there 
is no way to physically decompose this for usage in hyperspace. Hypermodule output 
decomposition must be done virtually. Even if physically decomposing hypermodule output 
was possible it would not be adequate. To cope with changes to the hypermodules, their 
output units can be easily regenerated. Reintroducing them into the hyperspaces where they 
are used should not require any manual intervention, namely having to do or adapt a physical 
decomposition. Finally, it is discussable if any hypermodule output decomposition should be 
done at all. Hypermodules can be reused in hyperspaces and be involved in compositions at a 
higher level of abstraction than that of the input units of the hypermodule. In many of these 
cases each hypermodule will correspond to a specific concern and may be used just like a 
hyperslice, thus, no decomposition needs to be done. 

5.1.4 Limitations 

Hyper/J allows all the previously presented development scenarios and more. It also provides 
interesting reuse scenarios. Nevertheless, there are some limitations to how Hyper/J 
implements the MDSoC model: 

� First of all, Hyper/J is limited to the code artefact in a single formalism (the Java 
language). MDSoC design and analysis implementations should be used together with 
Hyper/J to provide adequate traceability between artefacts. 

� When using physical decomposition of code, the automatic Class File dimension created 
by Hyper/J will be useless. Recall that with physical decomposition, the problem domain 
classes are decomposed into several different classes according to different dimensions of 
decomposition. This is an effect already discussed in Section 2.4, where the dominant 
decomposition is compromised. In this case, the Class File dimension should be explicitly 
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declared (as any other dimension can be created using Hyper/J). This would recreate the 
lost object dimension. 

� Finally, code must compile before Hyper/J is used. This might introduce limitations to the 
usage of Hyper/J, yet, it usually does not. In case virtual decomposition is used, code can 
be created in a standard fashion, thus compilation is not a problem. Otherwise, if physical 
decomposition is used, hyperslice declarative completeness usually satisfies the compiler 
requirements.  

[Tarr01] (Section 4.5) presents other, technical, limitations of Hyper/J. We summarize the 
effects of these technical limitations, especially in regards to the MDSoC model: 

� The nonCorrespondingMerge strategy does not work. This means that hypermodules will 
always compose units, matched by name, using either an Override or Merge composition 
function. There may be need for a hypermodule that only composes units with exception 
composition relationships. Without nonCorrespondingMerge, to achieve such a 
hypermodule, all unwanted matching units should be overridden with a NoMerge 
construct. 

� Merge and Override constructs are not available for exception composition relationships. 
This way, exception composition relationships are limited to using the default 
composition function defined by the composition strategy or the Bracket composition 
function. 

� Other constructs (like NoMerge and Order) are limited to specific types of units. This 
limits the expressiveness of composition. 

� Pattern matching also has some limitations. For instance, the pattern matching used in 
mapping units to concerns does not allow recursion when applied to packages. Most of the 
limitations with pattern matching are easily overcome, by writing more detailed 
relationships. 

� All output units, except for fields, are declared public, independently of their visibility 
modifier in their origin hyperslices. This is fruit of an additional transformation of 
composition with Hyper/J. This transformation is unwanted in regards to the MDSoC 
model and should be removed from Hyper/J. 

� All output units will belong to the same package. This is irrelevant if the units in 
hyperspace are physically decomposed using hyperslice packages. Yet, in complex 
systems it might be useful to output several different packages. This would for example, 
facilitate hypermodule reuse. The MDSoC implementation that is presented next 
(HyperC#) has a similar limitation, but at a much more serious level: it can only output a 
single class unit. 

[Tarr01] does not identify any origins for these limitations other than technical ones. This 
way, these issues should be overcome by corrections to the Hyper/J implementation. Then, 
the full power of a versatile and reusable MDSoC implementation for Java would be 
unleashed. 
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5.2 HyperC# 

HyperC# [Hantelmann06] is an MDSoC implementation for the C# language. Even though 
HyperC# is implemented as a pre-compilation process, it relies on a graphical user interface 
(GUI) for the manipulation of code and the definition of composition. This GUI must be used 
to create C# classes that can be composed. The same GUI supports the definition of an 
MDSoC hyperspace with dimensions and concerns. Finally, the GUI is also used to define 
hypermodules and obtain their output.  

In the class definition stage, the only purpose of this GUI is to gather meta-data about the 
code, avoiding the need to use a code parser. The gathered meta-data is stored in an XML file 
that should always accompany the original class file while HyperC# is used. For hyperspace 
definition, the GUI allows the declaration of dimensions and their respective concerns in a 
visual form. Then, the GUI allows the loading of classes that have the respective XML meta-
data file. Methods and constructors in these classes can then be placed inside the appropriate 
concerns of each dimension. This way, HyperC# allows the decomposition of class units 
while populating the hyperspace defined in the step before. The definition of hyperspace 
achieved this way can also be saved to a XML file. Next, the same GUI is used to define 
composition, in the form of hypermodules. First, a default composition action is defined. This 
determines the composition rule used for the hypermodule. Additionally, it is possible to 
define, at most, two exception composition relationships for the methods being composed. 
Finally, the GUI allows the generation of composed output code, which is limited to a single 
class, and its compilation. 

While defining the hypermodule, alternatively to defining a composition action, the GUI 
allows choosing that no composition will be done. In this case, the output is the decomposed 
code, according to the concern mapping done in the prior stage. This can be used to obtain 
physically decomposed code for existing classes. 

HyperC# is an MDSoC approach that is limited to the code artefact and a single formalism: 
the C# language. It offers a set of composition constructs for methods, but only fixed class 
composition. This way, methods can be created and introduced into hyperspace in a 
decomposed form. Latter, they can be composed into a single method again, although there 
are several other composition alternatives. Due to this liberty, methods can be considered 
primitive units in HyperC#. 

5.2.1 Dimensions, concerns and hyperslices 

Like Hyper/J, HyperC# does not offer a physical implementation of hyperspace for 
programmers to develop in. The GUI allows the matching of developed methods to concerns. 
Unlike Hyper/J, HyperC# only allows the matching of method units to concerns. The 
mechanism used to achieve this decomposition seems to implement a virtual decomposition 
approach (the second approach in Subsection 3.2.1). Nevertheless it implements this kind of 
decomposition on top of a physical implementation. This limits the virtual decomposition 
approach and removes some of its advantages. Namely, the same method cannot be mapped 
to more than one concern, even in different dimensions. This forces methods that overlap 
different concerns to be physically decomposed prior to being introduced into hyperspace. 
Contrary to HyperC#, and according to the MDSoC model, Hyper/J allows matching the same 
unit to different concerns in different dimensions. This is a powerful aspect of the virtual 
decomposition approach that is missing in HyperC#. It is this way that Hyper/J provides 
support for indecomposable units belonging to more than one concern. 
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In HyperC#, the physical hyperslice implementation code can be obtained by skipping 
composition, after all necessary class methods are matched to concerns. In the decomposed 
code, for each class that was used in decomposition (origin class) there will be a 
corresponding class (concern class) in each concern that has methods from the origin class. At 
most, there are as many decomposed classes as origin classes times the number of concerns. If 
the original inheritance information is retained in this decomposed form, HyperC# is able to 
retain the physical object dimension in its hyperspaces. Nevertheless, [Hantelmann06] does 
not provide information on whether inheritance is kept or lost in hyperslices. 

With its decomposition model and the feature for physical output of decomposed code, 
HyperC# decomposition can be used in three different ways: 

� Classes and their units can be created decomposed according to the hyperspace that will 
be created with HyperC#. When the hyperspace is defined, they can be introduced into it 
in this decomposed form. This way, the code will be manipulated in its decomposed form, 
with the inherent advantages. 

� Non-decomposed code can be loaded, after the hyperspace dimensions and concerns are 
defined, using HyperC# to decompose it. This provides aid in decomposing existing code. 
The existing code can still be manipulated in that form and used in different hyperspace 
definitions. This has the disadvantage of always needing to decompose the code while 
defining hyperspaces. Yet it can be differently decomposed for each hyperspace. 

� Finally, the result of decomposing existing code with HyperC# can be materialized into 
decomposed code using the appropriate HyperC# output feature. This code can then be 
manipulated in its decomposed form like in the first approach.  

HyperC# also introduces in each concern class the global declarations of the origin class. This 
partially addresses the declarative completeness requirements of hyperslices (concern 
classes). [Hantelmann06] is not clear regarding which global declarations are involved. 
Nevertheless, these will not include method declarations, as [Hantelmann06] proposes a 
different approach for declaring referenced methods. Methods that are referenced from 
concerns in a dimension, and do not belong to the dimension, should be included in the None 
concern of that dimension. This will not be possible with HyperC# due to the limitation that a 
method can only be put inside one concern. The remaining referenced methods can be 
introduced into None concerns without problems, as they are not present elsewhere in 
hyperspace. Nevertheless, this approach for methods does not provide declarative 
completeness of hyperslices but of the result of composition, that is, of the hypermodule 
output set. 

To appropriately achieve hyperslice declarative completeness with methods, the first HyperC# 
decomposition usage scenario from the three presented above should be used. Declarations for 
referenced methods should be introduced in the appropriate physically decomposed classes. 
That is, the classes that correspond to the concerns that reference the method. When class 
methods are matched to the respective concerns all of the referenced methods will be present 
in that concern. Finally, composition should use the override construct to impose the 
implementation of the method over its declarations. The limited composition model of 
HyperC# will not support declaratively complete hyperslices in most hypermodules, except 
for ones that use an OverrideByName composition action. This happens because HyperC# 
only allows using override composition if the OverrideByName composition action is chosen 
for the hypermodule. 
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5.2.2 Hypermodules 

Hypermodules can be created for each hyperspace defined with HyperC#. In HyperC# 
hypermodules, the set of hyperslices is always equal to the set of hyperslices in hyperspace. 
Nevertheless, it is possible to create a hypermodule with a subset of the hyperslices of a 
particular hyperspace. The original hyperspace should be edited, removing unwanted 
hyperslices and saved as a new temporary hyperspace. This hyperspace should then be used to 
create a hypermodule which will only have the appropriate hyperslices. 

Like Hyper/J, HyperC# offers three different composition strategies:  MergeByName, 
NonCorrespondingMerge and OverrideByName. As for composition functions, HyperC# 
offers the same ones as Hyper/J: merge, override and bracket. HyperC# supports a single 
composition strategy for each hypermodule. It also supports exception composition 
relationships. The HyperC# GUI allows the creation of at most two exception composition 
relationships per hypermodule. One can use a bracket composition function, defining as input 
units the method to be bracketed along with before and after methods. The other exception 
composition relationship is called equate. Equate simply uses the composition function 
defined by the composition strategy (either override or merge). It defines as input units 
explicitly identified methods (using the GUI), which must have the same signature. Both 
exception composition relationships are optional. 

HyperC# allows the creation of different hypermodules for the same hyperspace definition. 
This way, hyperslices can be used in different compositions, providing hyperslice reuse. 
Hypermodule reuse is also possible, by introducing the output of a hypermodule in a new 
hyperspace. The only limitation to hypermodule reuse is that their output will be a single class 
(in source code form). This will require creating a different hypermodule for each desired 
output class and reusing these classes one by one. 

5.2.3 Limitations 

HyperC# may be an interesting MDSoC implementation for .NET but it has serious 
limitations that may affect its usability in real-world applications: 

� HyperC# needs to use a specific GUI to offer MDSoC support. This might be acceptable 
for hypermodule declarations, but not for creating classes. If HyperC# used a parser on 
existing source code files, it could generate the same XML metadata it gathers from the 
class creation GUI, allowing the use of existing software for creating code. 

� The object dimension is lost with HyperC# composition. Using a different hypermodule 
for each desired output class overcomes this limitation. Still, this work-around will be 
impracticable in applications with more than a few output classes. 

� More generally, this approach is limited to manipulating (decomposing and composing) 
methods. There should be decomposition and composition constructs for other units, 
namely classes, interfaces, variables and properties. 

� Aside from the bracket composition function, it is only possible to define exception 
composition relationships with the composition function defined in the composition rule 
(using the equate construct).  It should be possible to define override and merge exception 
composition relationships independently of the composition rule being used. 
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� As for exception composition relationships, each hypermodule is limited to one equate 
and one bracket. Any number of exception composition relationships should be allowed. 

� Finally, the merge composition implementation creates a new method concatenating the 
bodies of each matched method. The resulting method shares the same scope for all the 
concatenated method bodies. Because of this, programmers must be aware of the 
composition used with their methods and avoid using the same variable names, etc. This is 
usually impracticable. As stated previously, this limitation should be overcome by 
introducing separate scopes for each merged method body. 

5.3 Conclusions 

Both Hyper/J and HyperC# are limited to applying MDSoC to code in a single language (Java 
or C#). Hyper/J works with compiled Java class files, while HyperC# works with source code. 
Both promote the reusability of hyperspace elements. Defining composition with both 
approaches has a similar basis: using a composition strategy per hypermodule along with 
exception composition relationships. Yet, the possibilities are much more limited in HyperC#, 
which only supports two exception composition relationships and uses fixed class matching to 
output a single class. Finally, HyperC# forces developers to work in a specific GUI that is 
very limited while Hyper/J allows developers to remain using their development environment. 
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Chapter 6  

 

Hyper/Net: An MDSoC solution for .NET 

languages 

Hyper/Net is a pre-compilation compositor or weaver for an MDSoC hyperspace created with 
.NET code. This means Hyper/Net processes .NET code that is in a decomposed form. It uses 
it to generate code that can be compiled using a normal .NET compiler. Hyper/Net was 
developed as part of the material support of the thesis presented herein.  

Hyper/Net is based on the fact that .NET code decomposition can be achieved using a native 
feature of .NET languages: partial types. Decomposition using partial types alone is enough to 
implement a basic MDSoC hyperspace. Partial types are able to offer decomposition and 
composition facilities at the granularity of classes.  

This chapter provides a presentation of the Hyper/Net MDSoC approach, bridging it to the 
MDSoC model presented in Chapter 3. The first section presents how we used .NET partial 
types to create a basic MDSoC hyperspace model. Advantages and limitations of this model 
are analysed. The MDSoC model is used to show how the hyperspace created with partial 
types is in fact an MDSoC hyperspace. The second section presents how Hyper/Net’s 
composition functionalities are used to extend this model, which limitations are overcome and 
which remain. 

This chapter is closely related to the two that follow it. Chapter 7 will present how Hyper/Net 
can be used by programmers, how it is integrated with IDEs and also two implementation 
examples using Hyper/Net. Finally, Chapter 8 will present the details about the Hyper/Net 
MDSoC composition process and the Hyper/Net implementation. 

6.1 The Partial Types MDSoC approach  

Sections 5.1 and 5.2 present two MDSoC implementations. Both are extensions to an OOP 
language and introduce constructs for both the decomposition and composition stages of 
MDSoC. This section shows how .NET partial types can be used as an MDSoC 
implementation. As partial types are a native feature of .NET 2.0 languages, this is the first 
native MDSoC implementation, at least to be acknowledged as such. 
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.NET languages are mostly object oriented, though there is a tendency to some becoming 
heavily multi-paradigm14. The following model uses partial types as a secondary 
decomposition mechanism that complements the dominant object decomposition in these 
languages. The additional decomposition with partial types will allow the creation of a multi-
dimensional concern space. 

Partial types allow the separation of a type (class or interface) between several different files, 
with a partial type (class/interface15) for each file. If there is a directory for each concern at 
hand, then, types can be separated according to these concerns. The respective partial type 
files can be placed under the directory for the appropriate concern. This way, programmers 
will be able to work separately in each concern by working on files in the respective directory. 
Nevertheless, concerns do not exist isolated, they will belong to dimensions. Dimensions can 
just as well be implemented as directories. Each concern belongs to one dimension. The 
directory for a concern will exist inside the directory of the dimension it belongs to. This way, 
with a two level directory structure, populated by partial types at the second level (the concern 
level), it is possible to create an MDSoC hyperspace in all .NET 2.0 languages. In this 
hyperspace, .NET compilation is in charge of composition by merging the partial classes of 
each class type into a single class. Figure 6 provides an example of such an MDSoC 
hyperspace directory structure with two dimensions, holding two concerns each, and partials 
of the Class1 class existing in three of its concerns. 

 

Figure 6. Example of a directory structure implementing a 2D hyperspace with a single class. 
 

6.1.1 Dimensions, Concerns and Hyperslices 

The MDSoC hyperspace implemented using the approach summarized above is limited to the 
code artefact and offers a choice of different formalisms: all .NET 2.0 (and above) languages. 
Unless .NET should offer language coexistence mechanisms for the same project, only one of 
these formalisms is supported in each MDSoC hyperspace at a time. 

Partial types allow classes to be decomposed. Class decomposition results in partial classes. 
Partial classes abide to a lighter set of completeness constraints than classes. Thus, partial 
class units can be considered at a smaller granularity than class units. A partial interface can 
similarly contain a sub-set of the declarations of the complete interface. Yet, there are no 
incomplete interfaces, so partial interface units have the same granularity of interface units. 
However, partial types allow interface declarations to span several different files, also 
providing a decomposition mechanism for interfaces. 

                                                
14 For example, C# 3.0 is heavily extended with functional programming constructs.  
15 When possible we refer generally to partial types instead of specifically to partial classes or interfaces. When 
adequate, details about partial classes or interfaces are presented. 
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Method units are at an even smaller granularity. With partial types, it is possible to have a 
partial class with only one method. This method can also exist in different partial classes for 
the same class type. This way, partial types also provide a decomposition mechanism for 
methods16. But there is no native method composition mechanism in .NET. Methods 
decomposed into different partial classes will not be composed and make it impossible for 
these partial classes to be composed themselves. In these situations, the .NET compilation 
process yields an error due to finding more than one method implementation for the same 
class type. In the model implemented by the partial type approach, method decomposition is 
possible but invalidated by the compilation process. As such, the primitive units of this model 
are partial types (classes and interfaces).  

As seen in Section 3.2, the first step in applying MDSoC is defining the hyperspace. First, 
dimensions and their concerns are determined (step 1 in Figure 7). The two-level directory 
structure for dimensions that we proposed easily accommodates the requirements of MDSoC 
dimensions and concerns. Implementing this directory structure is step 2 in Figure 7. For 
instance, the MDSoC model imposes that all dimensions and concerns must be unique. 
Furthermore, concerns can only exist in one dimension. This is guaranteed by the properties 
of the two-level directory system used to implement dimensions and concerns in the current 
approach.  

 

 

Figure 7. Simplified block diagram for the .NET partial types MDSoC approach. 
 

The primitive units of this approach (partial types) can be physically separated in different 
files, each placed under the appropriate concern directory (step 3 in Figure 7). This way, to 
populate the concerns, existing classes and interfaces should be decomposed into partial types 
and new units should be created as partial types, unless the entire type would belong to a 
single concern.  

In this approach, concern directories are hyperslices, as they physically implement the 
concern boundaries. There is an equivalence correspondence between concerns and 
hyperslices, as [Tarr99] proposes and Hyper/J implements [Tarr01]. This equivalence is the 
most limited implementation of the more general concern-hyperslice relationship of the 
MDSoC model. 

An MDSoC hyperspace can be extended by the introduction of new units, repeating step 3 in 
Figure 7 for each new unit. It can also be extended by the creation of new concerns and even 
dimensions, through the optional step 4 in Figure 7. These extension features are trivial in the 
partial types approach. New units can be introduced by being placed in new files inside the 
                                                
16 In fact, simply by splitting up methods, even outside of partial classes, we are decomposing them. OOP 
provides most of these decomposition functionalities. What it does not provide are the respective composition 
mechanisms. Without composition mechanisms, the result of decomposition is invalid for compilation. 
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appropriate concern directory. If the units that are being introduced correspond to more than 
one concern they should be decomposed using partial types. Dimensions or concerns are 
added by creating new directories in the appropriate level. These are placed under the parent 
dimension directory in the case of concerns. 

This approach only offers one kind of hyperslice implementation model. That is, the first 
implementation model presented in Subsection 3.2.1, which implements actual physical 
decomposition. .NET offers no kind of mapping facilities to create virtual hyperslices while 
retaining composed code. After the source code is decomposed, or as it is created in the 
decomposed form, there is no way to manipulate it in a composed form. As the composition 
mechanism is part of the compilation process it will not even be possible to view the 
composed code directly. This way, most of the time, the source code must be manipulated 
while decomposed. Programmers using this approach will be forced to focus each concern 
separately. In our opinion this is mostly a good thing.  

Nevertheless, when introducing new types or when composition itself is under scrutiny, there 
should be some kind of view of the composed result. Microsoft Visual Studio offers two 
features that will help in this matter; both were presented in Section 4.2.5. In Visual Studio 
2005, class diagrams ignore the partial class structure and display entire classes, thus class 
diagrams offer a perfect view of the composed result. This view is equivalent to the object 
dimension view. As such, class diagrams in this approach can be considered as a 
materialization of the object dimension of the MDSoC model. Class diagrams also allow 
navigation to the code containing the units displayed for a particular class (variables, methods 
and properties). In the case of types decomposed in partial types, this navigation is made 
directly to the partial type containing the unit in question. As for the second feature, 
Intellisense is an auto-completion feature that suggests units (methods, classes, etc.) based on 
the current context of program edition. Intellisense uses information that is equivalent to the 
compiled result of the project. When programming in a .NET project that is organized as a 
hyperspace, this information is equivalent to the result of composition. As such, Intellisense 
also provides a contextual view of the object dimension. A feature equivalent to Intellisense is 
also available in the SharpDevelop IDE with the same behaviour for partial type based 
hyperspaces. 

Without mapping facilities and relying solely on physical decomposition, the current 
approach only supports the separation in different concerns of units that are decomposable. 
But, there can be indecomposable units that may need to be associated with different concerns 
in different dimensions. These units must be left in only one of these concerns or otherwise be 
replicated in the different concerns. Both options are unsatisfactory. This approach is limited 
to the code artefact, so different artefacts, that usually must be bound using a virtual scheme, 
are not contemplated. 

As seen, with this approach, units that belong to more than one concern are either 
decomposed into these different concerns or are indecomposable, and can only be bound to a 
single concern. In this approach, the same unit never belongs to two concerns at once, thus, 
concerns never overlap. This provides the necessary guarantee that no overlapping occurs 
between concerns in the same dimension, fulfilling one of the requirements of the MDSoC 
formal model [Ossher99]. Nevertheless, as justified in the previous paragraph, this also makes 
it impossible for concerns to overlap between dimensions, even though it is allowed in the 
MDSoC model [Ossher99]. 

Recall from the MDSoC model, that all units must belong to each dimension. As such, in 
MDSoC, each dimension has a special None concern [Ossher99]. In this approach each unit 
will exist in only one dimension. This causes the None concern of each dimension to be made 
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up of all the units that belong to all the other dimensions. That is, the None concern of a 
dimension will be composed by all the files in all the directories of hyperspace, except the 
directory for the dimension in question. This way, instead of manually creating a None 
concern directory in each dimension, with this approach, the remaining dimension directories 
should be used to find None concerns for any dimension. 

MDSoC also defines that all units must belong to at least one hyperslice [Ossher99]. In this 
approach, units will belong to a hyperslice as long as they are placed under the appropriate 
directory. It could be dictated that no files can exist outside concern directories, but this is not 
enforced natively. Hyper/J does not enforce this restriction either [Tarr01] as it would forbid 
iterative refactoring from composed code into MDSoC decomposed code. 

MDSoC defines that hyperslices must be declaratively complete [Ossher99]. This is usually 
achieved by introducing declarations for all referenced units that are not present in the 
hyperslice. Here, the partial type approach is limited by the fact that the .NET compiler does 
not allow multiple declarations of units inside the same project. Most .NET languages also do 
not allow the declaration of units without also providing an implementation, unless these units 
are declared abstract17, which is not adequate for this approach. Instead, we introduce 
declarations as empty or equivalent implementations. For instance, a method declaration can 
be a method that throws an unimplemented exception. This way, with partial types, class and 
interface units can always be declared as an empty partial type, overcoming this limitation for 
classes and interfaces. If the referenced units do not exist inside the project, then, it is possible 
to introduce declarations for any kind of units (for example, classes, methods, variables and 
properties). This way, in this approach, declarative completeness in hyperslices can only be 
achieved when referenced units do not exist inside the project, are classes or are interfaces. 
Declarative completeness in hyperslices cannot be achieved when there are references to class 
members that exist elsewhere inside the project. Hyper/Net overcomes this limitation for 
method units as we will present in the next section. Nevertheless, without declarative 
completeness, when referenced units are missing, the compiler will show the situation as an 
error. It can be corrected by introducing hyperslices which offer the missing referenced units 
in the project or a reference to an external project with these units. The need for missing units 
is easily acknowledged this way. Having them explicitly declared might not provide a great 
advantage. Again, similarly to the issue with the physical None concern implementation, we 
are against the manual introduction of elements that can be automatically identified. 

6.1.2 Hypermodules 

Finally, having addressed most decomposition and hyperspace structure issues, we focus on 
the composition model of the partial types MDSoC approach. Composition is automatically 
provided in this approach. It is executed by the .NET compiler. During compilation, partial 
types are brought together into a single piece which holds the entire type implementation in 
the compiled code. Partial types implement strict unit matching by type. A partial class 
matches other partial classes of the same class type. The equivalent applies to interfaces. 
There is no way to compose partial types that do not correspond to the same type. The 
integration process is simple18: the units (methods, variables, properties, etc.) from each 
corresponding partial type are brought together under a single new type. This is a kind of 
additive integration and shares the attributes of merge integration from SOP and MDSoC.  

                                                
17 For example, abstract methods can only exist in abstract classes. Abstract classes cannot be instantiated, thus 
the declared method cannot be referenced. 
18 It was already described in full detail in Subsection 4.2.3. 
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In this approach, composition is defined by the decomposition, that is, by the partial types that 
are created during decomposition. The composition model for partial types is equivalent to 
defining a single MDSoC hypermodule for each .NET project. This hypermodule will be 
composed of the set of all hyperslices (concern directories) in the project that is being 
compiled. The compilation of a .NET project provides composition relationships that bind the 
different partial types of the same type to a single unified type. From this perspective, partial 
type composition can be seen as a composition/weaving process taken during .NET 
compilation. .NET compilation adds a limitation to the hypermodule defined by a .NET 
project. Unless the resulting hypermodule is declaratively complete, compilation will yield 
missing reference errors and fail. For the resulting hypermodule (project) to be declaratively 
complete it will have to reference only units that it contains, are contained by the referenced 
projects and binaries or are somehow declared. Hyperslices can reference any units offered by 
other hyperslices inside the project, this will not cause any compilation errors. Thus, 
hyperslices do not need to be declaratively complete themselves. 

The hypermodule for each .NET project will contain all of the hyperslices in the project, that 
is all of the concern directories included in the project. Then, there will exist a composition 
relationship for each defined type that is decomposed in more than one partial type 
declaration. Here, the input units are all partial types of the type being composed; in any 
order19. The composition function will generate a single output type. The composition 
function implements a simple merge composition for classes and interfaces. The output class 
or interface will contain the union of all unit sets of each partial type, that is, all of the 
methods, variables, properties, etc. of all the partial types being composed together. This 
composition function has the requirement that there are no duplicate unit signatures in all of 
the input units (in partial types).  

6.1.3 Model Limitations 

Recall, from the declarative completeness considerations for this approach, at the end of 
Subsection 6.1.1, that it is possible to introduce declarations for referenced units that do not 
belong to a project or to referenced projects. If these kinds of declarations are introduced, the 
.NET compiler will output valid code that is also a valid hypermodule. Nevertheless, during 
runtime, when units that were only declared are used, errors will occur. For instance, a 
method declaration can simply be a method that throws an unimplemented exception. At 
runtime, using this method will yield an unexpected exception. Thus, these resulting 
hypermodules are incomplete. To create complete hypermodules out of these incomplete ones 
we would require a mechanism capable of composing units in different compiled projects. It 
is important to note that compilers for the .NET 2.0 languages do not allow partial types to 
span different projects. That is, all partial classes of the same class type must belong to the 
same project. This happens because .NET uses referenced projects in their composed form. If 
it was possible for partial types to span different projects, it would introduce added flexibility, 
namely the ability of composing units in different projects. Due to this .NET limitation, 
hypermodules are not reusable in new compositions, thus must be complete (contain all 
referenced units) to be of any use. The MDSoC model offers hypermodule composition to 
promote reuse, but, as we will see, the partial types approach only offers other reuse 
mechanisms, namely at hyperslice level. 

                                                
19 The order of the partial types is not important as the composition function implemented by .NET partial types 
is commutative. 
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As presented, the matching and integration executed by this approach is defined by partial 
type decompositions. Additionally, our composition engine is the compiler, which generates 
output for a single entire project at a time. This way, a particular project is limited to defining 
one hypermodule. In MDSoC it is possible to use the same units in different hypermodules. 
Thus, units inside a particular project should be usable as code in other projects. The MDSoC 
model supports multiple distinct hypermodules for the same hyperspace [Ossher99]. Notice 
that for this approach, up to this point, we have left the set of all units in hyperspaces 
undefined. We will now bind it, making it possible for several hypermodules to co-exist in the 
same hyperspace, thus, gaining added hyperslice reuse flexibility for the approach.  

We could define that the unit set of each hyperspace is composed of the units inside a 
particular project united with all the units in referenced projects. In this case we would be 
limiting our hyperspace to a single project and thus a single hypermodule. Instead, we can 
broaden the set of units in our hyperspaces. Because hypermodules are implemented as 
projects, to follow the MDSoC model, we need to include as many projects as required into 
our hyperspace. This is simply done by broadening the set of units belonging to hyperspace to 
include any given amount of different projects. To do this, the dimension/concern space 
model that was initially presented has to be extended. In a hyperspace using this approach, 
containing more than one project, the set of dimensions is the union of all dimensions in all 
the projects. The same applies to the concerns inside these dimensions. Each dimension of 
such a hyperspace contains the set of all concerns belonging to that dimension in all of the 
projects in the hyperspace. The set of units in the resulting hyperspace is the union of all units 
in each project. 

At this point, we are faced with a problem. Hyperslices should be usable in any of the 
hyperspace hypermodules; they are in MDSoC [Ossher99]. This means that directories from 
each project should be usable by other projects. The simple directory system in this approach 
does not allow this, as the directory structure for each project is separate from the other 
projects. Obviously, replicating hyperslice directories that are shared among projects is not an 
acceptable solution. If the file-system that supports the projects allows symbolic links then 
our problem is solved. One of the projects including a particular hyperslice can contain an 
actual directory with files while the remaining projects have a symbolic link to this directory 
(a linked hyperslice). Not all file-systems support such symbolic links, but even in these 
cases, there is the possibility of using a source control solution to implement such symbolic 
links. The directories could be replicated in the local file-system but changes in any of the 
corresponding directories would map to the same directory and respective files in the source 
control tree. The source control solution has the added advantage of working independently of 
the file-system implementation being used. With either solution, it is even possible to have a 
project fully composed of linked hyperslices. In the MDSoC model, hypermodules cannot 
define specific dimensions to which concerns belong, they use the dimensions defined in 
hyperspace. To implement the MDSoC model correctly, linked hyperslices should always be 
placed under the same dimension directory as the respective real hyperslice. 

As for composition, the limited matching model that was already presented poses an 
additional limitation to this approach. Even though the previous paragraph describes how 
hyperslices can be placed inside any given hypermodule, the possible compositions with these 
hyperslices are severely limited. Units in hyperslices introduced in a particular project can 
only be composed with equivalent units that share the same type and are all partial types. 
When introducing hyperslices from different external origins, developed separately, it would 
be an enormous coincidence if the partial types of units to be composed matched this way. 

With the extensions presented, each hyperspace will be composed by all of the units in a set 
of projects (and the respective units from all referenced projects). Furthermore, each project 
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will correspond to a different hypermodule. That means, there can be any amount of 
hypermodules in a hyperspace. Thanks to symbolic links, either in the file-system or source 
control, these hypermodules can be made up of any set of units from all the units belonging to 
the hyperspace. The MDSoC model also defines a hyperspace composed of a set of 
hypermodules to which any hyperslices in hyperspace can belong. With the help from 
symbolic links, the partial types MDSoC approach fully supports these aspects of the MDSoC 
model. 

The most significant limitations of this approach relative to the MDSoC model can be 
summarized as follows: 

� In this approach, concerns cannot overlap between dimensions like they can in MDSoC. 
This problem would be minimized if units smaller than classes were decomposable, but 
they are not. 

� MDSoC offers reuse mechanisms at hypermodule and hyperslice levels. The partial type 
approach only offers a hyperslice reuse mechanism (with composition limitations) and 
does not allow hypermodule reuse in new compositions like MDSoC does. 

� Finally, this approach is limited to a single artefact and one formalism at a time (for each 
hyperspace). 

The next section presents a solution to some of these limitations. 

6.2 The Hyper/Net MDSoC approach 

The major advantage of the Partial Types MDSoC approach is that it is natively supported by 
.NET 2.0. Without additional programs, .NET developers can start using MDSoC in their 
software by using this approach. Nevertheless, this approach has limitations in terms of reuse 
and the granularity of decomposition. Hyper/Net is capable of addressing some of these 
limitations. This way, Hyper/Net is introduced as a complement to the composition features 
of .NET compilation, in particular, as a pre-compilation code processor. 

In the partial types approach, partial types are used as a decomposition/composition construct 
for classes and interfaces. Even though methods are decomposable, the resulting code is 
invalid as there are no composition mechanisms for the decomposed methods. Hyper/Net 
introduces such method composition mechanisms with constructs that extend the partial types 
MDSoC approach. As we will see, this lowers the granularity of primitive units of the 
implemented model from partial types to methods. 

The composition constructs of Hyper/Net take the form of .NET attributes. Attributes can be 
applied to any unit of code (class, interface, variable, etc.) but Hyper/Net only takes into 
account composition attributes for methods. The attributes made available with Hyper/Net are 
a kind of composition metadata for methods. The use of partial types introduces similar 
metadata for classes and interfaces. But, partial types also enable class and interface 
decomposition whereas method decomposition is achieved using language features, by 
creating separate, usually smaller, yet complete methods. Partial classes do not need to be 
complete classes.  

With the adequate Hyper/Net composition attributes, there can be a set of methods with the 
same signature in different partial types of the same type. These methods will be composed 
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according to the relationship defined by the attributes. Ultimately, the attributes define the 
composition function to be used while the types of partial types and method signatures define 
which units should match. Together, partial types and Hyper/Net method attributes define 
composition relationships which will be detailed further on. 

The aim of Hyper/Net is to compose methods. As seen in the previous paragraph, Hyper/Net 
will use attribute information from matching methods to execute their composition. Partial 
types do not allow methods with the same signature in partial types of the same type. This 
way, the code that should be processed by Hyper/Net cannot be handled by the .NET 
compiler. As such, Hyper/Net is forced to work as a code pre-processor that generates valid 
.NET code. Hyper/Net takes as input a .NET project and generates an equivalent body of code 
with all matching methods composed into code that follows the .NET compiler rules: thus is 
valid. To generate valid .NET code and compose methods, Hyper/Net has to replace each set 
of matching methods with only one method. To achieve valid .NET code, the composed 
method could be placed under any of the involved partial types, where the original methods 
were contained. This would also allow the use of the generated code to provide hypermodule 
reuse. This way, the code output of MDSoC might be used by developers in new 
compositions. Still, recall that in the partial type MDSoC approach, different partial types 
(and the methods therein) may belong to different concerns. Composed methods overlap all 
the concerns where the original methods belonged. Unless all matching methods belong to the 
same concern, there is no partial class where the composed method can be placed without 
violating the dimensions of the MDSoC model. To avoid this situation, Hyper/Net also 
implements partial type composition. Thus, Hyper/Net composes partial types, according to 
the .NET partial type model, into a single unified type. Matching methods in each composed 
partial type are composed and placed in the class resulting from partial type composition. 
Chapter 8 presents the details of this Hyper/Net composition process and its implementation. 
Finally, by implementing .NET partial type composition, Hyper/Net supports partial types in 
.NET framework versions prior to 2.0. This way, Hyper/Net incidentally offers partial type 
support for .NET 1.0 and 1.1. 

In terms of expressivity, .NET partial types only enable one kind of composition, that is, 
merge composition for partial types, as described in the previous section. Hyper/Net 
composition attributes, which are used with methods, provide a wider choice of three different 
composition types. Two of them, override [Ossher96] and merge [Harisson96], existed in 
SOP and are supported in Hyper/J [Tarr01], whereas the other, bracketing, was introduced in 
Hyper/J [Tarr01]. In Hyper/Net, when the override composition attribute is applied to a 
method of a partial class, it will be the only method with that signature in the class resulting 
from Hyper/Net composition. The merge composition attribute, when applied to matching 
methods, dictates that each method is retained, with a changed name. The original methods 
are replaced by a single method with the original name, which invokes all of the matching 
methods, using a total ordering. This total ordering is defined by a different priority level 
present as an argument of the merge composition attribute of each method. Additionally, the 
merge attribute also dictates how the resulting method will compose the results from each 
matching method, using another argument. Bracketing is an exception, as it can only be 
applied to a single method. When the bracketing composition attribute is used, the method is 
only changed by additionally starting and ending with the invocation of two distinct methods 
that the attribute has to define. Each of these three attributes defines a different composition 
function; these are presented further on as we bind the Hyper/Net MDSoC approach to the 
model presented in Section 3.2. 



66 

6.2.1 Dimensions, Concerns and Hyperslices 

The Hyper/Net MDSoC approach is still limited to the OOP artefact. Furthermore, Hyper/Net 
processes source code using a parser. The current Hyper/Net implementation uses a parser 
that is limited to two .NET languages: C# and VB.NET, but supports them starting from the 
1.0 .NET framework. This way, the Hyper/Net MDSoC approach is limited to these two 
formalisms: C# and VB.NET. 

With Hyper/Net, type decomposition is still achieved using partial types. Nevertheless, as 
Hyper/Net implements method composition, method decomposition is now supported. 
Methods can be decomposed into smaller methods, with the same signature. Even with 
Hyper/Net, it is not possible to decompose units into units smaller than methods. This way, 
methods are the smallest decomposable unit and at the same time one of the primitive units in 
hyperspaces using the Hyper/Net approach. As stated in Section 5.1, for Hyper/J, this is an 
exception to the definition of primitive units from Section 3.2. 

The current Hyper/Net implementation only supports the composition of methods (other than 
constructors). Composition support could be extended to other types of units below the class 
level, namely constructors, variables and properties, using the same attribute based approach. 
This is one of the issues focused in Section 10.3. 

Hyper/Net introduces only a physical decomposition mechanism for methods. It offers no 
mapping mechanism to place the same method in different concerns/hyperslices of 
hyperspace. This is equivalent to what happens with the partial types approach, for classes 
and interfaces. Recall that in the partial types approach, hyperslices are composed of types 
and partial types inside files in the corresponding concern directory. With Hyper/Net, a 
method unit can be placed inside a hyperslice by adding it to a partial class in the appropriate 
directory. If the directory already has a partial class for the class type to which the method 
belongs, this partial class should be used. Otherwise, a new partial class (of the class type that 
the method belongs to) should be created and the method placed inside it. The remaining units 
are similarly matched to a hyperslice, like they were with the partial types approach. The only 
difference with Hyper/Net is that methods with the same signature can exist in different 
partial classes for the same class type. 

6.2.2 Hypermodules 

With the Hyper/Net approach, hypermodules are still defined as .NET projects. The .NET 
project composition rule, defined by the partial types approach, must be extended to support 
Hyper/Net method composition. Hyper/Net method composition provides additional 
integration by offering a new composition function for each type of composition offered: 
merge, override and bracket. These composition functions are exclusively for use with 
method units. The composition rule itself is extended by adding one exception composition 
relationship for each set of matching methods. The attributes of the methods in the set define 
the composition function to be used in the exception composition relationship. 

There is a set of matching methods for each set of methods, belonging to partial types of the 
same type, where the methods have the same signature and at least one of the methods has a 
Hyper/Net composition attribute. In this case the composition attributes must be either merge 
or override. Bracket composition attributes define a different set of matching methods, with a 
bracket attribute and the two methods declared as before and after methods in the attribute. 
Additionally, the following rules must also be followed: 
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� In case one method in a set of matching methods has an override attribute, no other 
method in the set can have an override or merge Hyper/Net composition attribute. 

� In case one method in a set of matching methods has a merge attribute, all other methods 
in the set must also have a merge attribute with a different priority level (Section 7.2 
provides details about priority levels). 

Each of composition function defined by a different Hyper/Net composition attribute is 
implemented in the following away: 

� Override: returns the method with the override attribute. 

� Merge: renames the merged method and creates a new version of the method that invokes 
the original ones. It will keep the return results of calling each method and, finally, return 
the result of invoking a summary function with this set of results. 

� Bracket: changes the original method so it first invokes the before method, runs the 
existing code, retaining its return value and invokes an after method with it. Finally, the 
after method is used to compute the return result. 

If the methods being composed belong to a partial interface, then they will only be method 
declarations. Method declarations should not be merged or bracketed according to the 
previous composition functions because they would result in methods with bodies. This way, 
interface method composition with Hyper/Net should be limited to override composition. 

The implementation details of each Hyper/Net composition function define the completeness 
constraints that are applied to each set of input methods. In the case of override composition, 
the method with the override attribute must be complete. With merge composition, all of the 
original methods must be complete, because they will be used in .NET compilation. With 
bracket composition, the original method as well as before and after methods must be 
complete as they will also be used for compilation. The methods generated by merge and 
bracket must also be complete, but this is guaranteed by the Hyper/Net implementation. 

6.2.3 Model Limitations 

The decomposition/composition power of Hyper/Net can be used to overcome some of the 
limitations with the partial types approach in supporting overlapping concerns. With 
Hyper/Net, concerns that overlap due to method units that belong to all of them can be 
avoided. This is done by decomposing these methods into the different concerns. These 
concerns may belong to any dimensions. Properties, variables and constructors are still not 
decomposable with Hyper/Net. Yet, as a work-around, methods can be used instead of 
variables and properties to achieve decomposition. Even though, Hyper/Net should offer 
composition support for other units below the class level, other than methods. 

Decomposition will not always solve the issues with overlapping concerns. It is true that some 
dimensions contain decomposed units that would only overlap concerns in different 
dimensions if they were indecomposable. This is frequent with dimensions created to hold 
new kinds of decomposed units. For example, methods which provide discounts in a business 
rule dimension or methods providing logging in a non-functional requirements dimension will 
not exist in other dimensions, namely the Features dimension. Such dimensions are fully 
supported by a physical decomposition model. But, some dimensions simply provide an 
alternative view for existing units, namely the object dimension. In these dimensions, there is 
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no possible decomposition to avoid overlapping concerns with other dimensions. This kind of 
dimension needs a non-physical decomposition mechanism; that is a virtual matching 
mechanism. These kinds of dimensions were defined as virtual dimensions in Subsection 
3.2.1. Virtual dimensions are not supported by Hyper/Net or the partial type approach, except 
for the object dimension, as explained in the previous section. 

Also, as analysed in the previous section, declarative completeness may not be mandatory due 
to compiler error reporting mechanisms. Nevertheless, method decomposition also extends 
the declarative completeness support in MDSoC. Method declarations can be introduced 
using empty methods that are then overridden by methods in other concerns. References to 
variable or property units can be replaced with the use of methods. Only constructor 
declarations are impossible to introduce with the Hyper/Net approach. Unless a hyperslice 
references constructor units that it does not contain, it can be made declaratively complete by 
introducing method declarations or replacing property/variable references with method 
references20. 

As Hyper/Net does not introduce a non-physical decomposition mechanism, hyperslice reuse 
still depends on source control mechanisms or other mechanisms to avoid code copy. 
Hyperslice reuse is still limited by composition, in particular by the strict type matching 
imposed by partial types and method matching. By introducing method composition, 
Hyper/Net allows methods from a reused hyperslice to be composed with other methods, but 
the method signatures, name and containing partial type must match. 

Hyper/Net outputs composed source code for a particular project. As hypermodules are 
equivalent to projects in this approach, the Hyper/Net output for a project could simply be 
used like a hyperslice in new compositions, offering hypermodule reuse. The problem is that 
Hyper/Net output does not contain any partial types21. In this approach, matching can only be 
done with partial types of the same type and methods, with the same signature, inside 
matching partial types. Even though hypermodules could be reused as hyperslices in new 
hyperspaces, there would be no way of matching their units to units in other hyperslices. 

If Hyper/Net did not implement partial type composition, the resulting code could be used in 
new compositions, as it would still have the original partial types. But, the code resulting from 
Hyper/Net processing would not be equivalent to the result of a hypermodule. Instead, it 
would be equivalent to a single project hyperspace in the partial types approach. The resulting 
set of hyperslices could be reused but this would not be equivalent to a reuse mechanism for 
hypermodules. 

There is a more effective work-around that would enable hypermodule composition with 
Hyper/Net. As Hyper/Net implements partial type composition itself, the .NET partial type 
composition model could be slightly changed, to allow the composition of normal types with 
a set of partial types of that type. This would be equivalent to assuming all type declarations 
are partial. With this change to Hyper/Net, it would be possible to match non-partial types in 
the Hyper/Net output of a project (a hypermodule) to other classes in a new project that 
included it. This work-around still has the heavy limitation of matching by type, invalidating 
composition of different hypermodules that were not developed with the purpose of being 
composed together. 

Fully supporting hypermodule reuse, as defined in the MDSoC model, would require the 
separation of composition definitions from the code itself. It would also require the 
                                                
20 This change is intrusive to other hyperslices providing the referenced units. The introduction of composition 
constructs for variables and properties in Hyper/Net would overcome the need for this work-around. 
21 Hyper/Net also implements partial type composition (see Section 8.1 for details). 
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introduction of more powerful matching constructs than matching units by type or signature. 
Both partial types and Hyper/Net attributes belong to the code artefact. First, these 
composition constructs should be implemented in an artefact of their own, or in separate 
concerns of the code artefact. Then, constructs for matching classes and interfaces with 
different names/types and methods with different names should be introduced. This is 
naturally a case for the statement of future work for Hyper/Net (see Section 10.3). 

As will be seen in Chapter 7 and Chapter 8, Hyper/Net supports input files in either VB.NET 
or C# and can output code in any of these languages, independently of the input language. If 
the issues with hypermodule reuse are overcome, Hyper/Net will immediately support 
hyperspaces with multiple languages. Projects in different languages could be composed 
together. Each project in a different language is a hypermodule in a different formalism. This 
way, each hypermodule can be processed, using Hyper/Net, to generate output in the same 
language. Then, the result of these hypermodules could be used together in a new project. 
This way, different formalisms (.NET languages) might co-exist in the same hyperspace. 
Furthermore, as Hyper/Net pre-processes .NET projects (before compilation), it could be 
changed to handle projects with input files in different languages. This is possible due to the 
features of the .NET language parser used by Hyper/Net that maps C# and VB.NET to the 
same Abstract Syntax Tree (AST) structure. The details on how Hyper/Net uses this AST are 
provided in Chapter 8. As seen, with the adequate changes, Hyper/Net could support multiple 
formalisms in the same hyperspace, something that no MDSoC implementation up to date is 
able to do. 

As we saw, some limitations of the partial type MDSoC approach are overcome by 
Hyper/Net. But, because Hyper/Net is based on partial type matching, there are still some 
serious limitations: 

� Hyper/Net supports overlapping concerns that can be removed through decomposition but 
not overlapping concerns introduced by virtual dimensions. Hyper/Net offers no virtual 
dimension support, except for the object dimension. 

� Hypermodule reuse is still not possible. Hyperslice reuse is a little enhanced by the 
introduction of method composition. Nevertheless, it remains seriously limited by the 
strict matching model of partial types, not able to compose hyperslices developed without 
knowledge of each other. 

� Finally, this approach is limited to a single artefact (code) and two formalisms (C# and 
VB.NET). 

Some possible extensions to Hyper/Net that can overcome most of these limitations were 
already mentioned and are further developed in Section 10.3. 

6.3 Conclusions 

.NET partial types allow applying MDSoC without the need for specialized MDSoC software. 
The approach presented in Section 6.1 uses directories to support the hyperspace dimensions 
and concerns structure. Partial types are created inside the appropriate concern directory, 
implementing a physical decomposition of an MDSoC hyperspace. The .NET compilation 
process is in charge of composing the partial types together. Relying only in native .NET 
language features comes at the cost of severe reuse limitations. With the partial types 
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approach, hypermodule reuse is not possible and hyperslice reuse requires previous planning. 
Also, there is no virtual decomposition mechanism and, because there is no composition 
support for class members, these cannot be decomposed. 

Hyper/Net adds support for method composition to the partial types approach. This allows 
methods to be physically decomposed into different partial types. Hyper/Net acts as a source 
code pre-processor. It is able to compose methods with the same signature using either merge 
or override composition. It also provides bracket composition that can be applied to any kind 
of methods. Even though Hyper/Net extends the partial types support for unit 
decomposition/composition, Hyper/Net lacks support for virtual decomposition. Virtual 
decomposition is required to implement particular types of dimensions that provide 
alternative views of a set of physically decomposed units.  

If the reuse limitations of the partial types approach and Hyper/Net are overcome, there will 
be an additional benefit that also makes these solutions unique. Both approaches are able to 
support hyperspaces with multiple formalisms of the code artefact. With adequate reuse 
features it would be possible to compose units coming from different projects, written using 
different formalisms. 
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Chapter 7  

 

Using Hyper/Net 

This chapter presents guidelines on how to use .NET partial types and Hyper/Net for MDSoC. 
The first section describes how the partial types MDSoC approach can be implemented for 
.NET projects. Two usage scenarios are covered: how to apply this approach to existing code 
and how to use it initially, from scratch. The same scenarios are also covered in the second 
section, with the description of how Hyper/Net can be used when the partial types approach is 
not enough. Hyper/Net composition attributes are described in detail so the programmer is 
able to use them in different composition scenarios. The second section ends with the 
description of how to use Hyper/Net with .NET IDEs. This describes how the integration of 
Hyper/Net with existing programmer environments can be achieved. 

The third section discusses how MDSoC projects can be tested. The focus is on unit tests. It is 
proposed that these tests share the same concerns of hyperspace as the tested code. Testing 
guidelines are presented for the two main .NET test platforms, with particular MDSoC 
approaches tailored for each. 

Sections four and five present two complete examples of how MDSoC can be used to 
implement projects from scratch. The example described in the fourth section is limited to a 
single class so it can be more detailed. The example of the fifth section was used in most 
MDSoC literature and serves as a comparative and validation test for Hyper/Net. As the 
section shows, with Hyper/Net, it was possible to implement most of the example features in 
the way MDSoC literature presents them. 

7.1 Using the Partial Types approach for MDSoC 

This section succinctly presents the main usage lines of the partial types MDSoC approach.  
Even without using partial types, it is common to use the directory structure inside .NET 
projects to separate different features or concerns. This is done in an ad-hoc fashion and is 
limited to what the object decomposition allows to be separated. 

The process of using .NET partial types for MDSoC was summarized in the beginning of 
Section 6.1. Figure 7 in that section provides a condensed view of this process. To create an 
MDSoC hyperspace in a .NET project, a programmer has to create a set of top level 
directories, one for each dimension. It is not uncommon for projects to have only a few top 
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level directories like this. Simpler projects will only have one. This structure is not definitive. 
New dimensions can be added latter and it is also easy to break up dimensions, merge 
dimensions or move particular contents between different dimensions. This is done simply 
using directory creation and drag-and-drop. These mechanisms are the supporting pillars of 
the growth and evolution of MDSoC projects. 

A second directory level populates each of these dimensions with concern directories. These 
directories provide a finer granularity separation in a way that is defined by each dimension. 
Frequently, some dimensions have many more concern directories than others. Not all 
dimensions are equal in weight when compared. Yet, MDSoC allows the programmer to 
focus each of these dimensions and the concerns therein as if they we all equal. The only kind 
of directories in MDSoC hyperspaces that can contain files are concern directories. These 
files are usually code files but can also be resource files and other file types.  

The two levels of directories in MDSoC hyperspaces can be all created initially or can be 
created as they are populated. The second approach provides the benefits of iterative 
development. Nevertheless, if prior to programming there was a solid MDSoC design phase, 
it is also adequate to initially create the entire hyperspace (directory structure) based on the 
dimensional structure of the design stage. It is also possible to define the dimensional 
structure of hyperspace as early as the analysis stage. This dimensional structure should then 
be used in the design and code artefacts. 

Once there are concerns in the second level of directories, programming can start. Typically, 
any required types should be created as partial types in each concern. This way, the same 
types can readily be introduced in other concerns once they are needed there. The partial types 
in each concern will only contain the members that pertain to that concern. A .NET project 
that implements an MDSoC hyperspace can always be extended and changed. For instance, 
particular members of a type can be moved to the respective partial type in any other concern, 
even a new concern. If a particular concern starts to concentrate too many units it is also 
possible to decompose it into different concerns by moving the units (for example, class 
members) into a set of new concerns. It is also possible to merge different concerns by doing 
the inverse process, moving units in the different concerns into a single new one. This process 
consists mainly of copy-and-paste or even of drag-and-drop operations. 

The versatility provided by .NET projects and the MDSoC hyperspace directory structure also 
allows direct support for mix-and-match operations. Creating a different version of a program, 
by removing a set of concerns, is as simple as removing the respective set of directories from 
the project. These can be reintroduced latter on. This allows using the same .NET MDSoC 
project to generate different flavours of the same application. This kind of functionality can be 
particularly useful when developing software product lines.  

A normal .NET project can be converted into an MDSoC hyperspace implementation. This 
allows programmers to apply MDSoC to existing software. The units in the original code 
must be matched to concerns in a hyperspace. Again, hyperspace creation, using the two level 
directories structure, is the beginning of the process. Entire types can be matched to concerns, 
but usually only part of a type’s members is matched to a concern. This is handled by creating 
the adequate partial type in the concern and moving in the type members that belong there. 
Applying MDSoC to existing software is a refactoring task, so the functionality of the 
software must not be changed during this process. At all times, it should be possible to 
compile the code and run any validation tests. These tests can be used to guarantee that the 
project functionality is not changed. Section 7.3 presents some of the particularities of testing 
.NET MDSoC projects. 
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During the process of applying MDSoC to an existing .NET project, decomposed code 
coexists with non-decomposed code. This violates the MDSoC model, where units must 
always belong to at least one concern. This is necessary during the refactoring task but it is 
not advised to leave only part of a project decomposed using MDSoC. Doing so may cause 
difficulty in understanding the project and it will not benefit completely from the advantages 
of MDSoC. 

As presented in the previous paragraphs, the partial types MDSoC approach allows applying 
MDSoC to existing non-MDSoC projects, as well as developing MDSoC projects from 
scratch. The main requirement to apply MDSoC to existing projects is obvious: the source 
code for the project must be available. That code should also be editable so it can be 
decomposed. 

It is important to notice that .NET partial types can be used with classes but also be with 
interfaces. This is important when the same interface should span different concerns and is 
achieved by decomposing the interface into partial interfaces in each of the appropriate 
concerns. A partial interface will only declare the methods that are important for that 
particular concern. These methods will then be implemented by classes that implement the 
interface in that concern.  

In the partial types approach, members of a type that are declared in a specific concern are 
available throughout the remaining concerns. Furthermore, a type that does not exist in the 
concern the programmer is working on, can be initialized and used from it. This will require 
special care from the programmer. Once an element from another concern is referenced, a 
bound has been introduced. The element can be replaced with an equivalent one, eventually 
provided by a different concern. Still, changes to that element can be cross-cutting, as they 
may require changes to the way the element is used in the referencing concerns. 

An important feature for developers in any programming paradigm is error reporting. This is a 
crucial functionality when developing with MDSoC. Adding to the standard error reporting 
for .NET languages, the MDSoC hyperspace structure itself should be validated, along with 
the composition rules and, eventually, any completeness constraints should be applied to their 
result. Regarding the MDSoC hyperspace structure, the MDSoC model does not allow units 
to exist outside concerns. But the partial types approach does and has no warning mechanism 
to help avoid these situations. If the MDSoC model was followed strictly, these situations 
should not be possible and would yield an error.  

In the partial types approach, composition is defined by partial types and strict type matching. 
Partial type composition itself may not be possible to perform due to different kinds of errors. 
For instance, two partial classes of the same class type may extend a different class. This is 
not supported in common .NET languages. It will yield an error and the problem should be 
located in the partial classes that originate it (extend the different classes). Nevertheless, the 
Microsoft .NET 2.0 compiler does not identify the error at this location. Instead it locates it in 
the first partial class declaration for the class, which may even not extend any class. This 
forces programmers to search the remaining partial classes for the origin of the error. A more 
adequate localization would allow for immediate correction in the concerns of interest.  

If a type resulting from composition does not meet the .NET completeness constraints, the 
compiler detects the missing elements and should trace them back to the original source code. 
For example, the missing elements can be methods that should exist because of a class 
implementing a particular interface. In this case the partial class that implements the interface 
should be located as the source of the error. Again, the Microsoft .NET 2.0 compiler does not 
do this and localizes the first partial class declaration.  
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Other kinds of errors, for instance syntax errors, are detected normally and reported in their 
locations inside concerns of the MDSoC hyperspace. Here the Microsoft .NET 2.0 compiler 
works in an adequate fashion from the MDSoC perspective. It takes programmers to the 
specific concern of interest and simplifies error solving with MDSoC.  

The inadequate behaviour of the Microsoft .NET 2.0 compiler with composition and 
completeness errors should be corrected. If these errors were adequately localized, the 
programmer would be helped in solving the problems in the appropriate concern. For 
instance, with missing interface method implementations, these implementations should be 
done in the same partial type that implements the interface. This would be pointed out by an 
adequately localized error report. Nevertheless, for the remaining kinds of errors, the native 
.NET partial types approach reports errors in the adequate concerns, extending the advantages 
of using MDSoC to error correction. 

7.2 Using Hyper/Net for MDSoC 

When using the partial types approach for MDSoC, as classes are decomposed into different 
concerns, some of their methods can also match more than one concern. The partial types 
approach does not provide a way to decompose these methods into the appropriate concerns. 
Without this possibility, programmers have to rely on different workarounds, like creating 
differently named methods in each concern, which affects the code that uses the class in 
question, or keeping the method in only one of the concerns it belongs to. Neither workaround 
is satisfactory. This is where Hyper/Net comes into action. With Hyper/Net composition 
attributes these methods can be decomposed as necessary. Hyper/Net will be in charge of 
reuniting the decomposed methods according to composition attributes. The ability to 
decompose methods is useful when decomposing existing (indecomposed) code, refactoring 
an existing decomposition or by allowing the creation from scratch with decomposed 
methods. 

A method should be separated into the appropriate number of smaller methods, each 
containing the part of the original method functionality (statements) that belongs to a specific 
concern. To introduce these methods into the appropriate concerns, they should be added to a 
partial class in the appropriate concern. The partial class must be of the same type of the class 
to which the original method belongs to. This partial class may already exist. If it does not, a 
new partial class for the type can be created to hold the method in the appropriate concern. 
The remaining units are similarly matched to a concern as they were with the partial types 
approach. The only difference here is that a method with the same signature can exist in 
several partial classes for the same class type. Also, like the partial types approach, Hyper/Net 
can be used with new MDSoC projects. In this case, the methods can already be created in a 
decomposed form inside the appropriate concerns. 

Hyper/Net composition attributes are particular .NET attributes that can be applied to 
methods. Each Hyper/Net composition attribute provides a different way to compose 
methods. Hyper/Net offers the following composition attributes: 

� MethodMerge – used for merge and override composition. 

� MethodBracket – used for bracket composition. 
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Override is the simplest composition construct. It can only be applied to a single method from 
a set of matching methods. The method it is applied to will be output into the composed code 
while the others are simply removed. The override construct is defined as a MethodMerge 
attribute with a MethodMergeAction of Override, as exemplified in Listing 3. 

[ MethodMerge(MethodMergeAction.Override) ] 

Listing 3. Syntax of the override composition attribute. 
 

Both override and merge composition are defined using the MethodMerge attribute. This has 
to do with the common implementation for both composition methods and is further 
explained in Subsection 8.2.1.  

The merge composition construct allows embodying all of the decomposed methods 
functionality into a single composed method. The methods involved in merge composition 
must be methods with the same signature that belong to different partials of the same type. 
The composed method invokes each of these methods in turn. A MethodMerge attribute with 
a MethodMergeAction of Merge should be applied to each involved method, as exemplified in 
Listing 4. 

[ MethodMerge(MethodMergeAction.Merge, <Priority>, <MergeResultMethod>) ] 

Listing 4. Syntax of the merge composition attribute. 
 

Each attribute should also define a different priority parameter (<Priority> in Listing 4). This 
allows Hyper/Net to determine the order of invocation of the original methods in the 
composed method body. The priority parameter is optional. When not defined for 
MethodMerge attributes with a Merge MethodMergeAction, the priority is set to the default 
value of -1. Because there must be a different priority for all merged methods, at most one 
method can lack an explicit priority definition. No method should define a priority of -1 
explicitly. The default value may be particularly useful in the case of merging only two 
methods. The priority arguments define a total order in which merged methods will be 
executed. 

Finally, a method that is used to compose the return values of the original methods can also be 
passed as an argument to the MethodMerge attribute (<MergeResultMethod> in Listing 4). 
This method must be local to the class to which the merged methods belong to. Two different 
MethodMerge attribute constructors allow defining this method, either by passing a typed 
delegate or by passing a string with the name of the method. The method must always have a 
particular signature (see Listing 5). The result composition method receives an array of 
objects that are the results of the different original methods and returns an object of its own, 
which will, in turn, be returned by the composed method. Currently, Hyper/Net only 
implements support for the second constructor using the string argument. In this case, the 
method is obtained at runtime and any failure to match the delegate type is only identified at 
that point. The typed alternative would be more adequate by providing compile time type 
validation. 

public delegate object MethodMergeResult(params object[] mergedResults) 

Listing 5. The MethodMergeResult delegate type used by result merger methods. 
 

Only one merge MethodMerge attribute in these methods should define a result merger 
method. If more than one is defined, Hyper/Net uses the last result merger method it finds; 
according to the order it processes the source code. 
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In merge composition, all merged methods should have one merge attribute. But there is an 
exception. One of the methods can have no such attribute if all the others have one. This case 
will be equivalent to that method having a merge attribute (a MethodMerge attribute with a 
Merge MethodMergeAction) with the default priority (-1). 

The MethodMerge attribute can be used when an indefinite number of matching methods need 
to exist. Another composition attribute, MethodBracket, handles more specific scenarios, 
when one method must be preceded and succeeded by two other particular methods. The 
focus of the bracket composition is the method to be bracketed. With merge composition all 
methods involved are equally important. 

[ MethodBracket(<BeforeMethod>, <AfterMethod>) ] 

Listing 6. Syntax of the bracket composition attribute. 
 

The method that will precede the method to be bracketed is the before method 
(<BeforeMethod> in Listing 6). This method receives information about the bracketed 
method and its arguments. Bracket composition must also define an after method 
(<AfterMethod> in Listing 6) which succeeds the bracketed method and determines the return 
value of the composed method. The after method receives the same information as the before 
method, along with the return result of the bracketed method.  

Before and after methods will not have the same signature as the method to be bracketed. 
They must each implement a delegate type (see Listing 7) which provides the appropriate 
method signature with the required parameters and, for the after method, the object return 
type. Like with the result composition method in the merge construct, Hyper/Net only 
supports the identification of these methods using the MethodBracket constructor that passes 
their names as strings. Before and after methods must be local to the class that contains the 
bracketed method.  

public delegate void BeforeMethod(MethodBase method, params object[] 

paramters); 

 

public delegate object AfterMethod(MethodBase method, object returnValue, 

params object[] paramters); 

Listing 7. Before and after methods implement delegate types. 
 

In other MDSoC implementations either one of these methods is optional, but with Hyper/Net 
both the after and before methods have to be defined. This is imposed by the MethodBracket 
attribute constructor which must receive the identification of both methods. Nevertheless, one 
can always use empty before or after methods, which will not change the behaviour of the 
original method. 

Merge composition can coexist with bracket composition. That is, a bracket attribute can be 
applied to a method that is already involved in a merge composition. Hyper/Net first 
processes the merge composition. The bracket is then processed with the merged method. 
This is equivalent to first generating the merged code and then applying the bracket attribute 
to the merged method. This way, with Hyper/Net, it is not possible to bracket a single 
instance of a method that is involved in a merge composition. The same does not apply to 
override and bracket composition. Override composition removes all matching methods but 
one. Any bracket composition attributes in methods other than the one with the override are 
also discarded. Bracketing is only applied in conjunction with override composition if it is 
applied to the same method as the override attribute. As for merge and override composition, 
these cannot coexist because they have contrary effects. Hyper/Net yields an error and stops 
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processing decomposed code when it finds merge and override attributes in the same set of 
matching methods. Finally, there can only be one composition attribute of each type applied 
to the same method inside a particular partial class. 

As seen in the previous section, interfaces can be composed using the partial types MDSoC 
approach. Hyper/Net introduces the possibility of overriding or merging methods. This allows 
the implementation of interface methods to be decomposed into different concerns. The 
replication of the respective method declarations in different partial interfaces should also be 
possible to support the removal of particular concerns. For instance, an interface can declare a 
particular method in one concern and the method can be implemented in this and other 
concerns. If the concern where the interface declares the method is removed there will be no 
declaration for the interface method in the remaining concerns where the method is 
implemented. 

Unlike method implementations in classes, method declarations in interfaces only define the 
signature of the method. As in Hyper/Net methods are matched by their signatures and the 
containing class type, there is no need to merge method declarations in interfaces. As such, 
override composition can be used with the method declaration, allowing it to exist in as many 
partial interfaces of the desired interface type as required. This is fully supported by 
Hyper/Net. Nevertheless, as the method declaration signatures must always be equal, the 
override attributes should not even be necessary. Supporting this only requires a simple 
change in Hyper/Net but is an issue for future work. 

Merge and bracket attributes should not be used with interface method declarations. 
Nevertheless, Hyper/Net allows these attributes in method declarations and processes these 
declarations as if they were implementations. This will generate an invalid interface 
declaration in the composed code. It is also part of the future work plans for Hyper/Net to 
detected and disallow these situations. 

In terms of support for existing code, Hyper/Net can be used to compose methods from 
separate existing projects. Still, there are some limitations. The code must be merged under a 
single project so that partial types can be merged22. The methods which can be merged must 
belong to partial classes for the same class type and have the same signature. These are very 
restrictive limitations. Still, if the original source code can be edited, it is possible to first 
decompose it and adapt it to an adequate hyperspace, where the methods that need to be 
composed match. Nevertheless, this approach is limiting from the perspective of reuse. By 
applying it, the code loses its original form. This means the resulting code may not be usable 
in place of the original code. Hyper/Net reuse limitations were already discussed in 
Subsection 6.2.3 and will be revisited in Section 9.2. 

Statements inside a particular concern often need to refer to methods or other kinds of units in 
other concerns. More generally, concerns may depend on functionality from other concerns. 
Nevertheless, concerns should not depend on each other directly. Take, for instance, two 
concerns which provide the same functionality required by a third concern, the client concern. 
These two concerns may provide the same functionality through methods with different 
signatures. In this case, if the first concern is switched with the second one, even though the 
functionality is still present, the client concern will not be ready to use the functionality 
without being changed. This situation may be solved with appropriate composition constructs 
that operate at the level of method calls. Such composition constructs could be used to replace 
the method call with the call of an adapter that abstracted the different ways the same 
functionality is offered by different concerns. Introducing this kind of specialized composition 

                                                
22 This is also a limitation of the partial types approach with Hyper/Net. 
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constructs into Hyper/Net is an interesting issue for future work (see Section 10.3). Another 
solution might be to require that interfaces for inter-concern dependencies are defined and that 
the set of concerns which offer such functionality implement these interfaces. Nevertheless, 
what is important to keep in mind in the context of this section is that, with Hyper/Net, using 
functionality from different concerns introduces a dependency upon types and member 
signatures which Hyper/Net alone cannot help overcome.  

On a more positive side, Hyper/Net method composition retains the ability of the partial types 
approach to perform mix-and-match operations. When the directory for a concern is removed 
from a project, the contained partial types and any decomposed methods therein are also 
removed. The inverse happens when a concern directory is reintroduced into the project. As 
merged methods must all have merge attributes, merge composition is adequately prepared for 
such changes during mix-and-match. It is not the case of override composition, as it may not 
be possible to remove a concern with an overriding method without changing the remaining 
code. This issue is further discussed in Subsection 10.3.1. 

As for error reporting, Hyper/Net detects and reports composition and parsing errors. Only the 
first error detected is presented in the console output of Hyper/Net. These errors are relative to 
the decomposed code and can be analysed in the project source. For easier usage, an adequate 
IDE integration should present all detected errors and allow navigation to their locations. 
Other errors not detected during the composition or parsing phase will only be detected by the 
.NET compiler. These errors are located in the composed code that is output by Hyper/Net. 
This makes it more difficult for the developer to analyse and solve any such issues, having to 
understand the composition process. Future versions of Hyper/Net should address these error 
traceability issues and requirements. 

7.2.1 Using Hyper/Net in SharpDevelop 

A .NET MDSoC project using Hyper/Net can be developed using the SharpDevelop IDE like 
normal .NET projects can. The directory supported hyperspace is easily implemented using 
this IDE. The IDE also supports partial types and copes with repeated method declarations, so 
the look and feel of developing MDSoC projects should be pretty much the same as 
developing normal projects.  

A .NET MDSoC project can only be compiled after it is processed by Hyper/Net. The project 
itself is only used by Hyper/Net and what needs to be compiled is the output file it generates. 
This can be achieved by calling the Hyper/Net console application (HyperNet.exe) with the 
appropriate arguments: 

� The input project base directory, which is the path to the directory containing the .NET 
project.  

� The input project file, which is the filename of the .NET project file. It can also be a 
relative path from the project base directory. 

� The output file path, which is the path for the file where the composed code will be 
written. This can be a relative path from the directory Hyper/Net is invoked from. 

The output file generated by Hyper/Net can be used as the single source code file of another 
.NET project which is then compiled normally. Hyper/Net will overwrite the file in the other 
project and the project can be built, finally generating the binaries for the original MDSoC 
project. 
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Instead of doing this process manually, it could be supported by build file. SharpDevelop 
supports the NAnt build system natively so it would be the build platform of choice for this 
purpose. Nevertheless, we did not explore this line of integration. 

7.2.2 Using Hyper/Net in Visual Studio 

Visual Studio has a similar behaviour to SharpDevelop in terms of .NET MDSoC project 
support. It also supports partial types and copes with repeated methods. This means the 
programmer can use standard IDE features, like Intellisense, in MDSoC projects. 

The same integration described for SharpDevelop can be used with Visual Studio. Still, 
automatically invoking Hyper/Net as a project pre-compilation step is an alternative that we 
analysed using Visual Studio. The aim of this alternative is to allow compiling a .NET 
MDSoC project with a normal project build, making it transparent for the programmer that 
the project is using Hyper/Net, prior to .NET compilation, to be built. This requires that the 
build actions for all MDSoC source code files are changed from “Build” to “Embedded 
Resource”. This is done so that the .NET compiler will not use these files during compilation. 
It will use the Hyper/Net output file instead. Then, a call to Hyper/Net is added as a project 
pre-build event. Visual Studio build macros, like $(ProjectDir), can be used to provide the 
Hyper/Net arguments. A pretty generic example is: 

D:\HyperNet\HyperNet.exe $(ProjectDir) $(ProjectFileName) $(ProjectDir)Output.cs 

Here “D:\HyperNet\HyperNet.exe” provides the path to the Hyper/Net console application 
binary. The Hyper/Net arguments are obtained using macros. Only the output file has to be 
explicitly identified; the filename used is “Output.cs” inside the project root directory - 
$(ProjectDir). To work with this model Hyper/Net was changed to only process code files 
which have an “Embedded Resource” build action. The build action of the Hyper/Net output 
file (Output.cs in the example) must be set to “Build”. After this pre-compilation step 
generates the output code file, the compiler will build that code, eventually together with 
other source code files in the project that are not using MDSoC23 and so, have a “Build” build 
action.  

This solution meets our requirement of being transparent and supported by a standard build. 
Nevertheless, it has a major drawback. Most IDE features that help programmers (for 
instance, class diagrams and Intellisense) only make use of source code that is contained in 
files with a “Build” build action. This way, to be able to benefit from these features while 
developing MDSoC decomposed code, the build actions of all MDSoC source code files 
should only be changed to “Embedded Resource” before building the project. This is not 
practical at all. If Hyper/Net automated this change it would make this integration method the 
most transparent and adequate one. Nevertheless, to do this, Hyper/Net has to write a changed 
version of the project file. Visual Studio only processes these changes to the project file after 
compilation stars, working with the project version that existed prior to Hyper/Net pre-
processing. We were not able to overcome this difficulty yet, so it is an issue for future work 
(also discussed in Section 10.3).  

We also detected another issue that is related with the IDE behaviour to changes on loaded 
files. If the output code file is open in the IDE when the project is built, the compiler will use 
the output code file that existed prior to being written by the Hyper/Net pre-compilation step. 
                                                
23 Recall from earlier on in this section, that it is possible but not advised to have indecomposed code coexist 
with decomposed code in an MDSoC project. 
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This results in a build with a previous version of the composed source code. This way, the 
output code file should be closed when the project is built. 

Finally, error reporting is not adequate with any IDE integration approach presented. In this 
approach with Visual Studio, the compilation fails when an error is detected by Hyper/Net. To 
analyse the error, the programmer has to check the “Output” tab in Visual Studio, where the 
error message is printed. Error reporting should identify the origin of the error directly in the 
decomposed source code. This error traceability requirement is another issue for future work. 

This approach was developed with Visual Studio in mind but it also supported in 
Sharpdevelop. Like Visual Studio, SharpDevelop still does not support the enhancements 
proposed for an adequate integration, exhibiting the same behaviour when the project file is 
written in the pre-compilation step. Nevertheless, if the output code file is open when the 
project is built, SharpDevelop compiles the version of the file written by Hyper/Net and not 
the one in memory in the IDE. This way SharpDevelop does not require closing the output 
code file prior to compilation like Visual Studio does. 

The support provided by Visual Studio and SharpDevelop is very similar. This subsection and 
the previous one were separated according to our integration experiences and not on final 
functionality. The details were presented in the context of each IDE where they were analysed 
more precisely. Then, each approach was also tested on the other IDE but without focusing on 
details. 

7.3 Testing with MDSoC  

Unit tests are a particular type of tests that address very specific code functionality. For 
example, a unit test can check method returns based on different inputs. Unit tests are usually 
implemented using code, frequently in the same language as the code which is being tested. 
Functional tests also relate with code, but focus problems from the higher-level perspective of 
requirements. Functional tests can also be created using the same language as the code they 
test. Both kinds of tests are related with the problems that are posed by requirements and are 
solved by code (among other artefacts). Functional tests address these problems directly and 
unit tests address the details of particular solutions to these problems. 

In MDSoC, tests can define their own artefact or can share the code artefact with the 
application code. Both approaches are valid and feasible with Hyper/Net. In either case, tests 
address the same concerns as code does. 

The considerations presented in the two previous sections can also be applied to tests that are 
implemented using source code. It is possible to decompose test methods into different 
concerns (using Hyper/Net method composition) or separate different test methods in a 
particular test class throughout these concerns (using partial types). It is also possible to 
remove specific concerns keeping the remaining concerns adequately tested. 

We explore two unit testing frameworks in the context of MDSoC: NUnit and Microsoft 
Visual Studio Test Projects. NUnit [NUnit07] is an open source test framework. It supports 
the coexistence of tests and code in the same .NET project, so with NUnit, tests can share 
hyperslices with units from the code artefact. Nevertheless, tests are separated from the 
remaining code by having to follow particular restrictions. For instance, test methods have a 
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NUnit attribute to classify them as such ([Test]) and must belong to a class that is also 
classified with a particular NUnit attribute ([TestFixture]). 

With NUnit, tests relative to a particular concern should be implemented inside the directory 
for that concern. Test methods must belong to test classes and thus exist separately from the 
remaining code in each concern. Test classes should usually be partial classes. Each partial 
class of the test class should belong to a different concern and hold the test methods belonging 
to that concern. 

Methods that are composed using Hyper/Net should be tested from the perspective of each 
concern. If the methods are composed using override, the tests can be performed by separate 
test methods that are also composed using override. When two methods are involved, if the 
concern containing the overriding method is removed, the tests for that method are also 
removed. This way, the previously overridden method will now be part of the output code and 
will be tested by a test method in its concern that is not overridden anymore.  

When merged methods must be tested, the task can become more complex and may require 
case by case analysis. Nevertheless, a general approach is still possible. Unit test methods 
should test the isolated functionality of the method in each concern. Because of the effects of 
composition these tests will possibly fail unless they are run while the containing concern is 
isolated from the other concerns. This is acceptable if we define that the purpose of unit tests 
is to test the local functionality of each concern at a low granularity. The results of 
composition can be tested with additional tests designed for a particular set of compositions. 
For instance, these can test the merged result of all methods or of particular combinations of 
these methods. Nevertheless, the most adequate solution would adapt itself to the different 
composition scenarios and cope with the removal and addition of concerns. Sometimes this is 
possible using MDSoC composition for test methods, but not all the times. This is an issue for 
future research. 

Microsoft Visual Studio Test Projects were adapted from NUnit and are part of the Visual 
Studio IDE. Contrary to NUnit, Visual Studio only processes tests that exist in specific test 
projects, separate from the code projects. This is handled by creating the same directory 
structure in the test project that exists in the application project. This way, the test and 
application projects share the same hyperspace structure. The remaining approach described 
for NUnit also applies to Visual Studio Test Projects. Even the attributes that need to be 
applied to test methods and classes are similar. 

Testing, in particular unit testing, is a valuable aid while creating projects using MDSoC. On 
top of the standard benefits of testing, it can be used to validate the composed behaviour and 
identify when local concern behaviour is affected by composition. To consolidate this unit 
testing approach with MDSoC, the following examples also describe how unit tests were 
applied to them. 

7.4 Example: a Toll implementation  

This example documents a simple development using MDSoC with .NET partial types and 
Hyper/Net. The example takes place in the context of the business of motorway operation, in 
particular tolled motorways. Some tolled motorways contain passing tolls where a fixed 
amount is charged. Other tolled motorways contain entry and exit tolls which are used to 
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calculate and charge a fare at the exit toll. This example pretends to represent an exit toll in 
the latter kind of motorway tolling system. 

There are three main functional requirements for the exit toll that makes-up this example: 

� Provide the necessary functionality to charge users based on the identification of an entry 
toll. 

� Keep track of the number of vehicles that passed the toll. 

� Finally, to help avoid congestions, an extra percentage should be charged during 
congestion periods.  

This toll is implemented as a class library project that can be used as part of the software that 
manages the tolls. From that external perspective there needs only be a class implementing a 
method which receives the identification of an entry toll and returns the amount to be charged 
(see Figure 8). The other two requirements are considered to be internal to the project, so they 
do not need to expose properties or methods. 

 
Figure 8. External perspective for the Toll class. 

 

The three functional requirements are separated into different concerns of a Features 
dimension. This means there will be a Features directory in the project, containing one 
directory for each concern. The first requirement is implemented inside the directory for the 
Charging concern. The second requirement is implemented by counting passing vehicles and 
resides inside the directory for the Traffic Management concern. Finally, the third 
requirement is implemented inside the directory for the Congestion Charging concern. 

The Charging concern contains a partial Toll class. It provides the Toll class with a method to 
calculate the amount that needs to be paid when arriving from any other toll (the 
AmountFromOtherToll method in Figure 9 and Listing 8). For simplicity purposes this 
method always returns the same value (5). The PassToll method uses the previous method to 
calculate the value which is returned, but also increments a local variable (amountCharged) 
containing the total amount received. Additionally this partial class provides a method to get 
the total amount ever charged for the toll (TotalAmountCharged). This method is used by the 
unit tests which are described further on. 
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Figure 9. Class diagram for the partial Toll class inside the Charging concern. 

 

public partial class Toll 

{ 

 private int amountCharged = 0; 

 

 public int TotalAmountCharged() 

 { 

  return amountCharged; 

 } 

  

 public int AmountFromOtherToll(Toll otherToll) 

 { 

  return 5; 

 } 

  

 public int PassToll(Toll originToll) 

 { 

  int amountToCharge = this.AmountFromOtherToll(originToll); 

  amountCharged += amountToCharge; 

   

  return amountToCharge; 

 } 

} 

Listing 8. Partial Toll class implementing the charging requirement (Charging concern). 
 

All the functionality that implements the charging requirement is located in this concern. 
Tracking of the total charged amount is very simplistic but it could evolve into a more 
complex functionality, requiring a concern of its own. In this case the Charging concern could 
be separated into two new smaller concerns. 

The Traffic Management concern is also implemented as a partial Toll class. It also 
implements a PassToll method which simply increments a local integer variable 
(numVehiclesPassedThisHour) for each passing vehicle (see Figure 10 and Listing 9). This 
method can only coexist with its equivalent in the Charging concern if they are composed. 
This is done simply by applying a Hyper/Net MethodMerge attribute to the PassToll method. 
The attribute defines a MethodMergeAction of Merge so the functionality of this method is 
combined with the functionality of the same method in the Charging concern. The PassToll 
method in the Charging concern will have a default priority of -1. The explicitly declared 
priority of 0 for the method in the Traffic Management concern will make it run before the 
one in the Charging concern. The return value for the composed method will be calculated 
using an explicitly defined method: SumInts. As the PassToll method in the Traffic 
Management concern always returns 0, the composed method will return the same result as 
the Charging concern method. To keep up with the passage of time, a PassHour method has 
to be invoked. It simply clears the vehicle counter (numVehiclesPassedThisHour variable). 
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Finally, a HourlyTraffic integer property provides read access to the vehicle counter and is 
provided both for testing purposes as well as for use from the Congestion Charging concern. 

 
Figure 10. Class diagram for the partial Toll class inside the Traffic Management concern. 

 

public partial class Toll 

{ 

    private int numVehiclesPassedThisHour = 0; 

  

 public int HourlyTraffic 

 { 

  get { return numVehiclesPassedThisHour; } 

 } 

  

 public void PassHour() 

 { 

  numVehiclesPassedThisHour = 0; 

 } 

 

    private int SumInts(params object[] ints) 

    { 

        int res = 0; 

        foreach (int i in ints) 

            res += i; 

        return res; 

    } 

 

    [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 0, "SumInts")] 

    public int PassToll(Toll originToll) 

    { 

        numVehiclesPassedThisHour++; 

 

        return 0; 

    } 

} 

Listing 9. Partial Toll class implementing the vehicle counting requirement in the Traffic Management concern. 
 

The Congestion Charging concern needs to apply an overcharge percentage to the return value 
of the PassToll method, but only in case a threshold value for the hourly traffic is reached. 
The most adequate composition mechanism for achieving this purpose is method bracketing. 
In particular, it is used to apply an after method to the return result of the PassToll method. 

To be able to bracket the PassToll method, the method itself must also belong to this concern. 
This is achieved by introducing an empty PassToll method implementation (that simply 
returns 0) to which a merge attribute is applied (see Figure 11 and Listing 10). The priority of 
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this merge attribute is not relevant as the method has no side-effects and is only implemented 
to carry the bracket attribute. Nevertheless, the priority must be different from the priorities of 
this method in the other concerns. 

The bracket attribute identifies an empty method (Nil) for before, simply because Hyper/Net 
bracket attributes must provide a before method. The implementation of congestion charging 
is achieved with the after method (ApplyCongestionCharging). Because method bracketing is 
applied after merging, the after method takes the return result of the composed PassToll 
method. It then uses the HourlyTraffic property, from the Traffic Management concern, to 
determine if a 100% congestion surcharge should be applied. This happens only when the 
hourly traffic surpasses 100 vehicles. In this case, the composed PassToll return value is 
multiplied by two. This calculates the value that is returned by the after method. It is also here 
that a local variable (totalCongestionSurcharge) is incremented with the surcharge amount. In 
case the hourly traffic is still below 100 vehicles, the composed PassToll return value is 
returned without change. By using the HourlyTraffic property directly this concern has a 
dependency on the Traffic Management concern. This situation has been discussed more 
generally in previous Sections (6.2 and 7.2). 

Recall that in the Charging concern a TotalAmountCharged method returns the total value 
collected at a toll. By collecting a surcharge, the Congestion Charging concern is increasing 
the total value and also needs to complement the behaviour of the TotalAmountCharged 
method for correctness. This is done using merge (a MethodMerge attribute with a 
MethodMergeAction of Merge) on a local TotalAmountCharged method that returns the total 
surcharge value for the toll. The MethodMerge attribute defines that the composed result 
should be the sum of the merged method results by defining the SumInts as the result merging 
method. This way, the TotalAmountCharged method will return the normal charged value 
plus any eventual congestion surcharges. 

 
Figure 11. Class diagram for the partial Toll class inside the Congestion Charging concern. 

 

public partial class Toll 

{ 

    public int totalCongestionSurcharge = 0; 

 

    private void Nil(MethodBase method, params object[] parameters) 

    { 

    } 

 

    private object ApplyCongestionCharging(MethodBase method, object 

returnValue, params object[] parameters) 

    { 

        if (this.HourlyTraffic > 100) 

        { 

            totalCongestionSurcharge += (int)returnValue * (2 - 1); 
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            return (int)returnValue * 2; 

        } 

        else 

            return returnValue; 

    } 

 

    [HyperNet.MethodBracket(Nil, ApplyCongestionCharging)] 

    [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 2)] 

    public int PassToll(Toll originToll) 

    { 

        return 0; 

    } 

 

    [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 0, "SumInts")] 

    public int TotalAmountCharged() 

    { 

        return totalCongestionSurcharge; 

    } 

} 

Listing 10. Partial Toll class implementing the congestion charging requirement (Congestion Charging concern). 
 

To validate the behaviour of the Toll class, a respective test project was also created. A 
separate project was required because we used the Microsoft Visual Studio unit testing 
framework (see Section 7.3 for details). This test project is also organized using the same 
MDSoC dimension and concern directories as the example itself. Test methods exist inside 
the three concern directories. Each test method implements a unit test as seen from the 
perspective of the concern. For instance, a test method in the Charging concern 
(TestInitCharging in Listing 11) checks if a newly created toll does not have any charged 
amount. Another test method in this concern (TestCharging in Listing 11) checks if the total 
charged amount is incremented by each vehicle passage. 

[TestMethod] 

public void TestInitCharging() 

{ 

    Toll toll1 = new Toll(); 

 

    Assert.AreEqual(toll1.TotalAmountCharged(), 0); 

} 

 

[TestMethod] 

public void TestCharging() 

{ 

    Toll toll1 = new Toll(); 

    Toll toll2 = new Toll(); 

 

    toll1.PassToll(toll2); 

 

    int charged1 = toll1.TotalAmountCharged(); 

    Assert.IsTrue(charged1 > 0); 

 

    toll1.PassToll(toll2); 

 

    int charged2 = toll1.TotalAmountCharged(); 

    Assert.IsTrue(charged2 > charged1); 

} 

Listing 11. Test methods in the Charging concern. 
  

One of the Traffic Management concern test methods (TestInitForTraffic) checks if a newly 
created toll has no hourly traffic after initialization. Another test method in this concern 
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(TestHourlyTrafficCounting) simply tests if three consecutive vehicle passages are counted. 
Finally, another test method (TestPassHour) checks if, after the PassHour method is invoked, 
a toll that had counted vehicles is reset back to a zero hourly traffic value. The tests in this 
concern do not need any composition with the tests in the Charging concern because no result 
values of methods merged between these two concerns are affected by both concerns. The 
Charging concern determines the return value of the PassToll method while the Traffic 
Management concern only uses the PassToll method to increment its own counter. 

[TestMethod] 

public void TestInitForTraffic() 

{ 

    Toll toll1 = new Toll(); 

 

    Assert.AreEqual(toll1.HourlyTraffic, 0); 

} 

 

[TestMethod] 

public void TestHourlyTrafficCounting() 

{ 

    Toll toll1 = new Toll(); 

    Toll toll2 = new Toll(); 

 

    toll1.PassToll(toll2); 

    toll1.PassToll(toll2); 

    toll1.PassToll(toll2); 

 

    Assert.AreEqual(toll1.HourlyTraffic, 3); 

} 

 

[TestMethod] 

public void TestPassHour() 

{ 

    Toll toll1 = new Toll(); 

    Toll toll2 = new Toll(); 

 

    toll1.PassToll(toll2); 

    toll1.PassToll(toll2); 

    toll1.PassToll(toll2); 

 

    Assert.AreEqual(toll1.HourlyTraffic, 3); 

 

    toll1.PassHour(); 

 

    Assert.AreEqual(toll1.HourlyTraffic, 0); 

} 

Listing 12. Test methods in the Traffic Management concern. 
 

The Congestion Charging concern contains a single test method that checks if passing a toll 
without congestion is cheaper than passing it when the congestion threshold has been 
surpassed. 

[TestMethod] 

public void TestCongestionCharging() 

{ 

    Toll toll1 = new Toll(); 

    Toll toll2 = new Toll(); 

 

    int chargedWithoutCongestion = toll1.PassToll(toll2); 

    Assert.IsTrue(chargedWithoutCongestion > 0); 
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    for (int i = 0; i < 200; i++) 

    { 

        toll1.PassToll(toll2); 

    } 

 

    int chargedWithCongestion = toll1.PassToll(toll2); 

    Assert.IsTrue(chargedWithCongestion > 0); 

    Assert.IsTrue(chargedWithCongestion > chargedWithoutCongestion); 

} 

Listing 13. Test method in the Congestion Charging concern. 
 

The tests in the Charging and Congestion Charging concerns might use the actual price values 
returned by the PassToll method. In such case, some tests methods might also have to be 
composed, because the price values are affected through method compositions by these two 
concerns. 

7.5 Example: the Expression SEE  

Section 3.3 presented the expression SEE example that is used throughout most MDSoC 
literature. This example was also implemented using Hyper/Net. It was implemented 
according to the same approach as described in the original literature, in particular [Tarr01], 
which is the most detailed. Implementing the most relevant example from MDSoC literature 
using partial types and Hyper/Net is one form of validation of our MDSoC approach. 

The requirements and design artefacts of the Expression SEE have already been addressed in 
[Tarr99] and [Tarr01]. The hyperspace for the expression SEE will have only two dimensions, 
the object and the Features dimensions. We will be working from the perspective of the 
Features dimension.  

The Features dimension is materialized by a Features directory in a .NET class library project 
that implements the example. Inside, there is a directory for the each concern. One such 
directory contains the Kernel concern. It is a basis concern where each class is declared, 
related to others through inheritance and offers basic functionality like constructors. The 
classes in the Kernel concern also contain necessary private variables. Figure 12 provides the 
class diagram that depicts the class hierarchy of this example along with the Kernel concern 
methods and variables in each class. 
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Figure 12. The class hierarchy in the Kernel concern of the Expression SEE example. 
 

As defined in the original example, Expression is an abstract super-class for all the other 
classes. The Kernel concern defines the class hierarchy of this example, so, the remaining 
concerns do not need to define any inheritance relationships. Number and Variable classes 
extend Expression with the expected functionality. In the case of Number, it keeps track of its 
value, offers an accessor method24 (GetValue) and a specific constructor. Binary operators 
share many characteristics, namely containing two different expressions, one on the right of 
the operator, another on its left. These are captured by the BinaryOperator class which 
derives directly from Expression. All of the three specific binary operator classes (Plus, Minus 
and Assignment) inherit their Kernel concern functionality from BinaryOperator.  

All the classes declared in the Kernel directory (concern) are defined as partial classes so they 
can be further enriched in other concerns. 

The Display concern focuses on printing expressions on the screen. This functionality is 
provided by a Display method in the classes of the expression hierarchy. This concern takes 
advantage of the partial types MDSoC approach. Each class of the hierarchy has a partial in 
this concern. These are represented in Figure 13. 

                                                
24 We use accessor methods instead of properties because Hyper/Net only allows the composition of methods 
and there might be a need to compose these accessors. 
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Figure 13. Class diagram for the Display concern. 
 

Each of these partials implements a Display method, except for the Plus, Minus and 
Assignment classes. These use the Display implementation from their parent class 
(BinaryOperator) and only provide a specific helper method, getOperandRepresentation,  that 
it requires. The Display method simply prints a representation for the expression on the 
screen. For example, for a Number object, it prints its integer value. 

The partial classes in this concern can define no class hierarchy. Nevertheless, there is a 
dependency on the particular class hierarchy implemented in the Kernel concern. The Plus, 
Minus and Assignment classes rely on the Display method implementation from the 
BinaryOperator class. If BinaryOperator was removed as the parent of any of these three 
classes these would lack a Display method implementation. The need for particular parts of 
the class hierarchy in this concern can be expressed by defining inheritance only for the 
involved partial classes. In this case, by having the Plus, Minus and Assignment classes 
extend the BinaryOperator class. The remaining class hierarchy can be changed in the Kernel 
concern without affecting this concern. But, if these required inheritance relationships are 
changed in the Kernel concern, they will conflict with the inheritance directives in this 
concern and result in a partial type compilation error. 

The Evaluation and Check concerns are implemented much in the same way as the Display 
concern. Each adds a new method to the classes, Eval and Check respectively (see Figure 14 
and Figure 15).  
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Figure 14. Class diagram for the Evaluation concern. 
 

Not every class has a partial implementation in each concern. For example, there is no way to 
implement common binary operator evaluation. So the Eval method is only implemented in 
BinaryOperator child classes and there is no partial for the BinaryOperator class in the 
evaluation concern.  

Another case occurs in the Check concern. Check functionality for binary operators is 
implemented in the parent class and inherited by the Plus and Minus child classes, without 
any additional implementations. The Assignment class overrides the binary operator Check 
method and implements an additional check because the left side expression must always be a 
variable, as only variables can be assigned to. 
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Figure 15. Class diagram for the Check concern. 
 

Up to this point, this example did not require the use of Hyper/Net and was fully supported by 
the partial types approach. Also recall that up to this point the original example was easily 
implemented with OOP (see Section 3.3). The major advantages of using MDSoC here, in 
particular the partial types approach, is that the programmer is able to create and evolve each 
concern separately. Furthermore, it is possible to mix-and match concerns. To create a version 
of this project without either one of the Evaluation, Check or Display concerns it is only 
required to remove the respective directories from the project and build it. 

[Tarr99] and [Tarr01] propose an extension to the Expression SEE that was addressed (in 
Section 3.3) by adding a Style Checking concern. This new concern should offer its 
functionality through the same Check method that was introduced in the Check concern. This 
enables existing code that uses expression checking to do style checking without needing to 
be changed.  

At this point we find a major limitation with the partial types approach. If we declare another 
partial class for any of the implemented classes, offering another implementation for the 
Check method, the compiler will detect a syntax error. This happens because the Check 
method cannot be defined twice. Remember that each partial class is composed into a unique 
class in an additive fashion. All of the elements declared in the partial classes will belong to 
the resulting composed class, which cannot have duplicate method definitions. This is where 
Hyper/Net method composition is required. 

A new Style Check concern is created, providing partial implementations for the Check 
method (see Figure 16). As a simplification of the original style check feature, this Style 
Check concern simply contains a check for the size of the name of variable elements which 
must be smaller than 5 characters. This way, this concern contains a default Check 
implementation for the Expression class, which always returns true. This default behaviour is 
overridden in the binary operator, to make sure the expressions on each side are correct. 
Finally, it is also overridden in the Variable class, to check if the size of its name is smaller 
than 5 characters. 
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Figure 16. Class diagram for the Style Check concern. 
 

Each of the Check methods in the Style Check concern has a MethodMerge Hyper/Net 
attribute declaration applied to it (see Listing 14). This defines how these methods are 
composed with their counterparts in the Check concern. The attributes define a method merge 
action of merge (instead of override) so the functionality of existing methods coexists with the 
new functionality implemented in this concern. The -10 priority level used, by being smaller 
than the -1 default priority, defines that these methods are invoked after the existing Check 
methods from the Check concern. Finally, the MethodMerge attribute also identifies a result 
merging method, mergeCheckResult. This method will only return true, if all the composed 
methods return true. 

public partial class Variable 

{ 

 [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, -10, 

"mergeCheckResult")] 

 public override bool Check() 

 { 

  return this.var_name.Length < 5; 

 } 

} 

Listing 14. The Variable partial class in the Style Check concern. 
 

The Style Check concern originally did not contain an explicit implementation of the Check 
method for the Number class. This has interesting consequences when this concern is 
composed with the existing Check concern, which explicitly defines a Check method for the 
Number class. When the two check concerns are composed together, the Check method 
defined in the Check concern, for the Number class, overrides the merged implementation 
provided by the Expression class. This way, the resulting Check method for the Number class 
is simply the Check method from the Check concern. This is not an issue for this particular 
example because both the merged Check method for the Expression class and the Number 
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Check method in the Check concern always return true. If the Style Check concern Expression 
Check method did not always return true, then there would be a composition issue. In such 
case, the Style Check concern should also implement a Check method for the Number class. 
To avoid such issues in the evolution of the Style Check concern we already implemented the 
Check method for the Number class. This is an example of an important MDSoC design need. 
When relying on inherited behaviour for a specific concern, it is necessary to check if the 
inherited functionalities are not overridden in other concerns. 

In terms of implementation, the style check feature rules from the original example could be 
implemented in much the same way as we implemented the check for the variable name 
length. But, by doing so, this example would only become more complex, without adding any 
new composition or usage scenarios. 

Another feature for the Expression SEE, that can exemplify more Hyper/Net composition 
attributes, is logging method entries and exits for all method calls. This feature was proposed 
and exemplified (using Hyper/J) by [Tarr01]. [Tarr01] uses the bracket composition to trigger 
the invocation of logging for the entry and exit of all methods in the expression class 
hierarchy. This feature is also implemented with Hyper/Net using bracket composition.  

First, a new Logging concern is introduced. This concern contains a partial class definition for 
the Expression class (see Figure 17). This partial class introduces two new methods that will 
be used for logging: methodEntryLog and methodReturnLog. These are protected static 
methods that respectively implement the Hyper/Net delegate signatures for before 
(BeforeMethod) and after (AfterMethod) methods. Static methods are lighter and more 
appropriate for the logging task than instance methods. But Hyper/Net bracket composition 
requires that the before and after methods are available as class instance members. This is 
why the entryMet and exitMet method delegates are introduced. They simply work as method 
reference holders for the static methods, making them available for invocation as class 
instance members. Finally, the GetLogPrefix is only a helper method used by both logging 
methods to write a logging prefix with the current date, time and the current thread identifier.  

 

Figure 17. Class diagram for the Expression class in the Logging concern. 
 

Relying on the inheritance hierarchy defined by the Kernel concern the logging methods 
become available to all other classes. These methods can then be used with a Hyper/Net 
bracket attribute to apply logging to the methods in each class (see Listing 15 for an example). 
This bracket attribute has to be explicitly applied to all the methods in all the classes of the 
hierarchy. Furthermore, to be able to declare the bracket attribute, there must be a declaration 
of these methods in the partial classes of the Logging concern. Each of these method 
declarations must be composed with the respective methods in the other concerns using 
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appropriate merge composition attributes. Listing 15 shows the two composition attributes 
used to bracket the Check method in the Assignment class. 

[HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, -20)] 

[HyperNet.MethodBracket("entryMet", "exitMet")] 

public override bool Check() 

{ 

    return true; 

} 

Listing 15.  Bracket attribute declaration for the logging feature. 
 

Hyper/J uses a more powerful matching mechanism (based on regular expressions) to define, 
with a single composition statement, that all the methods in all the classes are bracketed. 
Achieving such expressivity with Hyper/Net is an issue for future work (see Section 10.3). 

Another feature proposed for this SEE in [Ossher99] is caching. Each expression should 
cache the result of evaluation for future usage. Cache invalidation would also be an issue for 
this concern. This could be implemented if the Eval method was bracketed with methods such 
that the cache contents were tested to check if they were usable. If so, instead of evaluating 
the expression, this result should be returned. Yet, this would require an enhancement to 
Hyper/Net’s bracket attribute to provide around functionality (another issue for future work). 

The Expression SEE example was also tested using the MDSoC unit testing approach 
presented previously in Section 7.3. This was done using a Microsoft Visual Studio .NET test 
project that is organized using the same hyperspace dimensions and concerns as the example 
itself. In terms of the object dimension of tests, there is a single test class that implements 
different test methods and a test initialization method. Independent concerns like Display and 
Evaluation implement their own specific test methods in a partial test class. There are no 
conflicts as these test methods are also independent. 

To test concerns that have methods which are composed together, like the check concerns, the 
test project also relies on Hyper/Net method composition. The tests for the Style Check 
concern allow the assignment of two binary operator expressions. But this is not allowed in 
the tests for the Check concern. A TestCheck_assign_two_binOp test method does this test 
accordingly in each concern. When the tests for each concern are run separately, by removing 
the other check concern from the tested and test projects, all unit tests pass. To test the 
composed functionality of both check concerns appropriately the 
TestCheck_assign_two_binOp test method has to be composed itself. The result of merging 
the functionality of the Check concern Check methods is that the strictest checks always 
apply. So, in this case, the assignment of two binary operator expressions is invalid. This is 
tested by applying an override composition attribute to the TestCheck_assign_two_binOp test 
method in the Check concern, which is the less strict test. 

Hyper/Net composition is further used in the test project to merge test initialization methods 
that exist in different concerns. In this case, there was need to initialize two additional 
variables in the Style Check concern. This is done using the same test class initialization 
method signature, which has to be composed with the initialization method in the Kernel 
concern. These methods are composed using a merge composition attribute that is applied to 
the test class initialization method in the Style Check concern. 

Finally, when a concern is removed from the tested project it also has to be removed from the 
test project. A different test approach that is possible using NUnit (also presented in Section 
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7.3) allows tests to coexist with code in the tested project. That approach has the advantage of 
simultaneously removing the code and tests when a concern directory is removed. 

7.6 Conclusions 

MDSoC hyperspace dimensions and concerns are supported on a very simple directory 
structure. This structure can easily be changed by moving files between concern directories. 
.NET partial types are used to place class members and other units into the appropriate 
concern directories. Additionally, Hyper/Net provides override, merge and bracket method 
composition using two different attributes that are applied to methods: MethodMerge, for 
overriding and merging, and MethodBracket, for bracketing methods. 

Both the .NET partial types approach and Hyper/Net are versatile and allow creating 
hyperspaces from scratch or refactoring existing projects into hyperspaces. As for error 
reporting, with partial types, the .NET compiler allows tracing errors back to specific points 
inside the adequate MDSoC concerns. Hyper/Net is more limited in terms of error reporting. 
It is possible to develop normally with .NET IDEs using the proposed approaches. Still, 
Hyper/Net has some specific IDE integration issues that should be addressed as part of future 
work. When using any of the two approaches, the developer should take special care while 
introducing inter-concern dependencies. Normal .NET compilation and IDEs will also help in 
this regard. 

.NET applications developed using MDSoC can be tested like other .NET applications. Tests 
address the same concerns as code does. So, tests implemented using code can be part of an 
MDSoC hyperspace created using Hyper/Net. These tests benefit from the advantages of 
MDSoC and provide testing benefits that are specific to MDSoC, like being able to test local 
concern functionality at low granularities and supporting mix-and-match. 

Finally, using a very simple example, centred on motorway tolls, we provide a realistic usage 
scenario for merge and bracket composition and also exemplify dependencies between 
concerns. The SEE Expression example is a bit more complex, with its own class hierarchy, 
and provides an important evaluation scenario for Hyper/Net as it was also used as an 
example for Hyper/J. This example provides more diversified usage scenarios of all 
Hyper/Net composition attributes. 
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Chapter 8  

 

Hyper/Net implementation 

Hyper/Net is only a prototype implementation. It was created with the purpose of overcoming 
some limitations of the partial types native MDSoC approach. These limitations were 
identified while we were implementing the two MDSoC examples described in Sections 7.4 
and 7.5 using only partial types. Hyper/Net successfully overcomes these limitations, as seen 
in Chapter 7. Implementing and using Hyper/Net also served as a mean to deepen our 
intimacy with MDSoC usage with .NET programming. 

There were no analysis or design stages prior to Hyper/Net implementation. This chapter 
provides some analysis and design material from a reverse-engineering perspective. Refining 
this analysis is an issue for future work. One case that requires such refinement will be 
identified when future versions of Hyper/Net separate composition metadata from the code 
itself. In our current approach, composition meta-data processing and extraction is not 
separated from composition execution. If these two concerns had been separated from the 
start it would be easier to evolve Hyper/Net with this future work requirement. This is just an 
example of how Hyper/Net code may be inadequately organized. Furthermore, Hyper/Net it is 
not optimized or even fully tested. 

Yet, we acknowledge the value of the Hyper/Net implementation. So, this chapter provides an 
MDSoC hyperspace analysis of Hyper/Net, drilling down to the details allowed by each 
dimension. This task is simplified as Hyper/Net is itself implemented using a partial types 
MDSoC hyperspace. We emphasize that this hyperspace was not carefully designed and 
originated as an organization attempt of our early Hyper/Net plain OOP implementation. This 
should not be used as a reference MDSoC hyperspace. Still, the analysis made of this 
hyperspace is itself an interesting approach. The versatility of the MDSoC perspective 
simplifies the documentation process, allowing details about the implementation to be 
provided in smaller, partly independent groups contained in hyperslices. 

The first section presents a procedural perspective of Hyper/Net. This is equivalent to the 
analysis of a time dimension, yet it has no physical implementation with Hyper/Net. The 
second section focuses the physical architecture of Hyper/Net. It starts by detailing the 
MDSoC hyperspace implemented by Hyper/Net source code. The requirements realized by 
Hyper/Net are presented in the context of each concern of this hyperspace. The second section 
goes on to present the two separate projects that together implement Hyper/Net. One is a class 
library that needs to be included in .NET MDSoC projects that use Hyper/Net. This class 
library is analysed in detail from the perspective of its two concerns. The other one, the 
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Hyper/Net console application, is first presented from the perspective of the object dimension. 
This provides an overview of the code and a classic design presentation. Then, the details 
about each element of the application are provided from the perspective of functional 
dimensions. Here, each object is analysed in detail but only for a particular concern. 

8.1 The process  

As seen in Section 6.2, Hyper/Net works as a pre-compilation tool that processes source code. 
This way, Hyper/Net works before the compiler, transforming source code. This process is 
depicted in Figure 18 and described in detail below. 

 

Figure 18. Illustration of a procedural view of Hyper/Net. 
Hyper/Net starts by processing a project file to load source code files (1). It ends by writing a single composed 

source code file, ready for .NET compilation (8). 
 

Hyper/Net receives as input an MSBuild project file25. It uses the project file to identify 
source code files that need to be processed by Hyper/Net prior to .NET compilation (see 
Figure 18, Step 1). These files are identified in the project as embedded resources, instead of 
compilation resources. This is how Hyper/Net distinguishes files it should process from files 
directly destined for the compiler. 

                                                
25 MSBuild project files are build-files, written in XML. Among other things, they contain information regarding 
the source code files that are involved in the project. For instance, it identifies the files that need to be compiled 
to produce binary output for the project. These are marked as compilation resources. 
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The identified source code files are read and their contents concatenated into a single body of 
source code (see Figure 18, Step 2). This is equivalent to reading the source code from a 
single file, except that a few ordering impositions of .NET languages are not maintained. For 
instance, source code files in .NET languages must have all using/import directives at the 
begging of the file. To abide to this rule, and support parsing the code just read, there must be 
an additional pre-processing step. It consists of moving all using/import directives to the 
beginning of the code (see Figure 18, Step 3). 

Having made the body of source code valid, Hyper/Net then uses the NRefactory parser to 
produce an AST (abstract syntax tree) for the code (see Figure 18, Step 4). This parser 
produces the same AST structure from C# and VB.NET code. This way Hyper/Net supports 
source code in any of these two languages. After this step, all processing is done using the 
AST instead of the textual format of the source code. This is depicted in Figure 18 through the 
“AST” labelled box on top of the code blocks of each stage. 

Following the parsing stage there is a composition preparation stage (see Figure 18, Step 5). It 
is in this stage that Hyper/Net merges partial types into a single type declaration. Before 
partial types can be merged, a similar merge has to be done with namespaces. Recall that the 
parsed source code is a concatenation of source code from different files. With the exception 
that using/import directives have been moved to the beginning of the code body. The same 
namespace can occur time and again in the concatenated source code. This is valid in .NET 
languages, but makes partial type merging more difficult as partial types would have to be 
matched across a wider scope. This way, the contents of different nodes for the same 
namespace are brought together into a single namespace node. This step makes partial types 
merging easier, as partial types can be searched for under the same namespace AST node26. 
Partial types are fully merged. This means that type references (inheritance and 
implementation of interfaces), attribute declarations and all partial type member declarations 
are brought together. This step has a purely additive nature and is limited to the class and 
interface level. Composition between class members is done in the next step. Both 
composition preparation procedures (merging namespaces and partial types) involve iterating 
through the AST.  

The next stages of Hyper/Net processing are the core of our work. Merge and override 
composition is done in the same step (see Figure 18, Step 6). The AST is iterated through 
once again, this time searching for repeated instances of the same method. Methods are 
matched by signature, that is, the name, parameter types and return type must all match. As 
partial types were previously merged, the search for matching methods is local to each class 
node. At this point, any matching methods are searched for Hyper/Net attributes to determine 
the correct course of action. If one (and only one) of the methods has an override attribute the 
remaining methods are removed. Otherwise, the methods must define merge composition. 
Merge composition consists on renaming the existing methods and creating a new ‘super-
method’, the merged method, that will call each of the previous methods. The priorities 
defined in the merge attributes that are applied to each method are used for determining the 
order by which the methods are invoked. The result of each invocation will be kept in a local 
variable inside the merged method. At the end of the invocation process an optional result 
merging method is invoked. This method, which must be defined as a local class method, 
takes as arguments the list of results of each method invocation and returns only one value. Its 
return value is returned by the merged method. The result merging method can be defined as 
an argument of any of the merge composition attributes. 

                                                
26 Recall that partial types cannot span different namespaces. Two equal partial type signatures in different 
namespaces are considered as different types. 
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Bracket composition searches the AST directly for bracket attributes in methods (see Figure 
18, Step 7). Once a bracket attribute is found, the method starts to be changed. First, the 
before method is invoked from the beginning of the existing method. The before method 
receives as arguments the original method meta-information and arguments. Then, prior to the 
original method return statement, the after method is invoked. The after method receives the 
same information as the before method and also the return result of the original method body. 
Existing return statements are replaced by the return of the after method. When the return 
statement expressions are replaced by the after method invocation, these expressions are 
passed as an argument to the after method. 

At this point the code in the AST is ready for compilation. This way, Hyper/Net outputs the 
composed code in the language of choice (see Figure 18, Step 8), either C# or VB.NET. The 
code is output as a single source code file which can be compiled. 

To compile Hyper/Net composed code it is not necessary to use a .NET 2.0 compiler. Instead, 
a .NET 1.0 or 1.1 compiler can be used. This happens because the partial types defined in the 
source code are processed internally by Hyper/Net, after the parsing stage, to facilitate the 
composition phases. As a result, even though partial types are used in Hyper/Net’s MDSoC 
source code, the compiler used with code resulting from Hyper/Net composition needs not be 
aware of these partial types, because Hyper/Net already transformed them into complete 
types.  

8.2 Hyper/Net internal architecture  

Hyper/Net has itself been implemented using the partial type MDSoC approach presented in 
Section 6.1. Hyper/Net works as a command line tool, taking as argument a project file, which 
identifies the source code to be composed, and the output file path to write the composed code 
to. The command line tool is implemented using a Windows console application .NET project 
written in C#. Prior to using the command line tool, MDSoC projects that use Hyper/Net may 
need to use composition attributes. These attributes are declared in a different .NET project 
which is a class library .NET project, also in C#. This project needs to be referenced by any 
project which use Hyper/Net composition attributes. The Hyper/Net console application 
project also depends on the attribute class library and so, it also references it. 

The hyperspace defined by Hyper/Net has concerns that are divided between these two 
different projects. Furthermore, the two different architectural concerns that are separated by 
these projects can be seen as populating a project dimension in the Hyper/Net hyperspace. 

 
HyperNet 

Hyper/Net Console Application 
project 

 
HyperNet.Attributes 

Hyper/Net Composition 
Attributes class library project 

Figure 19. Hyper/Net viewed from the project dimension perspective. 
 

Up to this point two Hyper/Net MDSoC dimensions have been presented. The first is the time 
dimension with the procedural perspective presented in the previous section. This dimension 
does not have a physical implementation. On the contrary, the project dimension depicted in 
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Figure 19, which is the second dimension, is at the top level of the physical decomposition of 
Hyper/Net. 

These two projects were internally modularized using the partial types MDSoC approach. The 
hyperspace structure implemented in these two projects is represented in Figure 20. Along 
with the Object dimension, it is made up of two functional dimensions: 

� Features: This dimension contains all concerns that are not specific to the composition 
attributes introduced by Hyper/Net. It contains general features like input/output handling, 
parsing and some related features. 

� Language Features: The second dimension is populated by concerns that are specific to 
the language elements introduced by Hyper/Net. It contains specific features regarding 
Hyper/Net attribute-based language extensions. It is the only dimension present in the 
attributes project where it contains declarations for these concerns. In the console 
application project, these concerns are populated with the implementation that processes 
the respective Hyper/Net composition language features. 

 

Figure 20. Representation of the MDSoC hyperspace used for Hyper/Net. 
 

We now look at the concerns of the Features dimension, one by one, presenting the 
requirements addressed by each concern: 

� Flow Control 

o Handles and validates command line arguments. 

o Invokes different processing steps in the appropriate order. Processing steps are 
factored into other concerns in this and the Language Features dimension. 

� Input 

o Reads project files. 

o Processes project files to determine source code files. 

o Reads the source code files. 

� Kernel 
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o Contains the core fields of each class and appropriate manipulation methods and 
constructors.  

� Output 

o Provides a way to get source code that is held in memory in string format or is 
generated from a parsed AST.  

o Is able to write the required output files when invoked by other concerns. For 
instance, it is used to write the final composed code file and temporary code files 
used in debugging scenarios. 

� Parse Preparations 

o Moves namespace import/using directives from the middle of a textual body of 
code to its top.  

o Should eventually do other preparations needed to support parsing the results of 
merging a set of different code files into a unique string. 

� Parsing 

o Can parse code in a textual form. Generates an AST that can be manipulated 
programmatically. 

� Namespace Composition 

o Provides a way to merge all units in an AST, which belong to the same 
namespace, under the same namespace node. 

� Partial Type Composition 

o Provides partial type merging. This implements partial type composition like the 
.NET compiler, so it only does additive merging at class and interface level. After 
this, there can be repeated methods inside classes. This is an issue for the Merge 
concern in the Language Features dimension. 

The Language Features dimension only contains two concerns but these address several 
related requirements: 

� Bracket 

o Provides attributes that can be used to declare methods which should be bracketed 
in MDSoC programs. 

o Searches an AST for methods that should be bracketed. 

o Extracts bracketing information from these methods. 

o Uses bracketing information to apply bracketing, transforming the AST. 

� Merge 

o Provides attributes that can be used to declare methods which should be merged or 
override others in MDSoC programs. 
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o Searches an AST for methods that should be merged or override others. 

o Extracts merging information from these methods. 

o Searches for all methods that match a particular method which should be merged 
or override others. 

o Determines if the merging information is valid for a set of matching methods. 

o Uses the merging information to merge the methods involved or have a method 
override all the others. This is done over the AST, changing the AST. 

Curiously, if the Language Features dimension is removed, Hyper/Net implements a pre-
compilation tool that merges partial types into complete types. It would be possible to use 
such tool to support partial types with a .NET 1.x compiler. This is an example of the 
capabilities of mix-and-match that are made possible by MDSoC. These have also been 
address as part of the examples of Chapter 7. 

8.2.1 Composition attributes class library 

This class library implements the first requirement presented for the Bracket and Merge 
concerns. For the Bracket concern, it is implemented with the declaration of the 
MethodBracket attribute and, for the Merge concern, with the declaration of the MethodMerge 
attribute. These are the attribute types that can be applied to compose methods in .NET 
MDSoC projects. By populating only these two concerns, this project exists only in the 
Language Features dimension of the Hyper/Net hyperspace. This is due to the fact that all the 
remaining features are already defined as part of the .NET languages so do not need to have 
any specific declarations provided by Hyper/Net. 

Initially, these two attributes were declared inside the Hyper/Net console application project. 
This meant that each MDSoC project created using Hyper/Net would have to reference the 
entire Hyper/Net application. This class library was created as a refinement to this initial 
solution. Now, the class library contains exclusively the Hyper/Net code units that are 
publicly required and is the only binary that needs to be referenced from .NET MDSoC 
projects. 

The two Language Feature dimension concerns in this project are physically decomposed. 
This way it is trivial to analyse the implementation of these concerns in their decomposed 
form. The code for each concern is already isolated, so it can be directly analysed without 
leaving the context of a particular concern. It is also possible to focus part of the design 
artefact of each concern using a class diagram depicting a single concern. Such a class 
diagram can be obtained directly in an IDE like Visual Studio by removing the remaining 
concerns from the project and generating a class diagram.  

This project is analysed for the design and code artefacts in this fashion. The same approach 
will be taken for the concerns implemented in the Hyper/Net console application project in 
the following subsection. 
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Language Features – Bracket 

The Bracket concern defines the MethodBracket attribute (see Figure 21). It is used to declare 
bracket composition for a particular method it is applied to. 

 

Figure 21. Class diagram for the Bracket concern in the Hyper/Net attributes class library. 
The respective source code can be found in Appendix - I.1.1. 

 

The MethodBracket attribute defines two methods: the before and after methods. These can be 
identified using one of the two attribute constructors. The first, and the most adequate one, 
uses method delegates to identify the before and after methods. The second constructor uses 
method names instead. Still, during runtime, the methods identified by these strings must 
match the delegate types. We will see how this is implemented by Hyper/Net in the next 
subsection, when the Bracket concern is analysed for the console application project. 

Using the delegate approach is more adequate because type checking is done during 
compilation instead of runtime. Nevertheless, because the string approach was easier to 
implement and with the purpose of prototype implementation simplicity, only the methods 
passed as strings are taken into account. The next subsection describes how bracket 
composition is implemented using the string representations. 

There are two different delegates, one for the bracket before method – BeforeMethod delegate 
– and another for the after method – AfterMethod delegate. The BeforeMethod delegate 
provides before methods with a MethodBase object (the method field of the BeforeMethod 
delegate in Figure 21) which contains information about the method being bracketed. 
MethodBase is a native class from the .NET framework and is located in the 
System.Reflection namespace. It is the standard way of providing information about methods 
and constructors in .NET. This delegate also provides the parameters passed to the bracketed 
method as a parameter object array (the parameters field in Figure 21). 

The AfterMethod delegate provides the same information as the BeforeMethod delegate along 
with an object containing the return value that would originally be returned by the bracketed 
method (the returnValue field in Figure 21). The return value of this delegate will be the 
actual return value of the bracketed method. 
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Language Features – Merge 

The Merge concern defines the MethodMerge attribute (see Figure 22). It is used to declare 
merge or override composition between methods with the same signature (method name 
included). 

 

Figure 22. Class diagram for the Merge concern in the Hyper/Net attributes class library. 
The respective source code can be found in Appendix - I.1.2. 

 

This attribute has four different constructors, each providing a different level of expressivity. 
The simplest constructor takes only a MethodMergeAction argument, initializing the 
mergeAction field. MethodMergeAction is an enumerate that distinguishes between override 
composition and merge composition. In override composition, no other MethodMerge fields 
are used, even if they are initialized. In fact, override composition should be supported using a 
different attribute. Merge composition requires more details to be provided, has different 
requirements for usage and the respective validation differs from override composition. Other 
MDSoC implementations provide separate constructs for merge and override as seen in 
Chapter 5. This is a design flaw in Hyper/Net that should be corrected as part of future work 
(see Section 10.3). Even though the remaining fields are not used in override composition 
when using this first (single argument) constructor, in both override and merge composition, 
they are initialized with defaults. The priority is set to -1 and there is no mergeResult (a 
MethodMergeResult delegate) or mergeResultByName string to identify the method used for 
merging the results of involved methods. This constructor should only be used for override 
composition or for only one method from a set o matching method in merge composition. 

A second attribute constructor also takes as argument the priority level for merged methods. 
Hyper/Net requires that all merged methods have a different priority level. This imposition 
exists because of a Hyper/Net implementation detail that can be found in the Merge concern 
of the Hyper/Net console application project. A .NET SortedList object is used to hold data 
regarding the different methods identified by these attributes. SortedList objects do not allow 
duplicate keys and the priority field is used as a sorting key. More implementation details are 
provided in the next subsection. 

Finally, the two remaining constructors also define a MethodMergeResult delegate that 
identifies a method used to merge the return values of the merged methods. These 
constructors should be used with methods that return a type. The first constructor of these two 
uses the typed method delegate directly, storing it in the mergeResult field. The 
MethodMergeResult delegate receives the set of return results from merged methods as an 
object array (resultsToMerge) and returns an object with the computed return value. The 
second constructor of these two uses a method name (a string), storing it in the 
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mergeResultByName field. The method identified by the string must match the delegate type. 
Like with the MethodBracket attribute, for the purpose of prototype implementation 
simplicity, only the result merging method passed as a string (mergeResultByName) is used. 

8.2.2 Command line application 

The Hyper/Net command line application is implemented as a C# Console Application 
project. With the exception of two requirements, which are implemented by the composition 
attributes class library project, this project implements the requirements that populate the 
Hyper/Net MDSoC hyperspace. 

First off, we analyse the object architecture of this project providing a global perspective of 
the Hyper/Net internal architecture. Then, the Features and Language Features dimensions 
perspectives are explored further, as each concern is detailed in terms of implementation. 

 

Figure 23. Class diagram for the complete Hyper/Net console application. 
 

The application class diagram in Figure 23 depicts the perspective of the object dimension. 
The MainClass class provides the entry point (Main method) that processes command line 
arguments and takes it from there. Most of the work done is triggered from the Run method 
which will be detailed further on. The MainClass also provides implementation for some of 
Hyper/Net’s input and output requirements.  

The SourceCode class abstracts details like which parser is used or how it is used. Upon 
construction, it takes as arguments a string of code along with the indication of the language 
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of that piece of code. That string of code simply concatenates the contents of a set of source 
code files. The SourceCode class then provides methods that prepare this code for parsing, 
parse it, merge partial types, merge methods, bracket methods and finally provide output 
code. These methods are invoked, in order, by the Run method in the MainClass. Each of 
these methods belongs to a different concern.  

Two other classes provide limited testing functionality. This was used and implemented as 
required during initial development. The MainClass fields are only used for these tests. 

Features - Flow Control 

 

Figure 24. The partial class diagram for the Flow Control concern. 
The respective source code can be found in Appendix - I.2.1. 

 

All .NET console applications have as an entry point a Main method. In Hyper/Net, this 
method first checks if the command line arguments are valid. If so, the arguments will 
identify a project file to be used as input and a target file to write the composed output to. The 
project file lists the source code files that will be loaded and concatenated into a source code 
string. To achieve this, the LoadMergedSourceCode method, implemented in the Input 
concern, is invoked. The invocation itself should also be made from inside the Input concern. 
To achieve this it would be necessary to compose methods, allowing the Main method to be 
decomposed along the different concerns. Unfortunately that falls outside of the partial types 
MDSoC approach possibilities. In future versions of Hyper/Net, a prior Hyper/Net version 
could be used for composing the Hyper/Net project, allowing method decomposition to be 
done. 

The string that concatenates the source code is then passed into another Flow Control method 
– Run – also in the MainClass. Using a string to contain the concatenated input source code 
may not be the most adequate approach. As a justification, please recall the prototype nature 
of Hyper/Net.  

The Run method invokes the different processing steps in order. The processing steps 
themselves are factored into other concerns in this (features) and the Language Features 
dimension. The same decomposition considerations presented for the invocation of the 
LoadMergedSourceCode method also apply here. 

The Run method receives as arguments the source code to be processed (code), an identifier 
of its language (sourceLang), identification of the language in which to write the compose 
code (outputLang) and a path for an output file to store it (outputFile). First, the method 
initializes a SourceCode object with the source code. During SourceCode initialization, the 
source code language is also set. Then, the method prepares the source code for parsing by 
factorizing import/using directives, using the SourceCode method FactorizeImports from the 
Parse Preparations concern. Then, it tries to parse the source code. If this fails, the parse error 
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obtained from the SourceCode object is displayed and the source code text being parsed is 
saved for analysis (using the SaveToFile method from the Output concern). If parsing is 
successful, the remaining steps can be started. All of them use the AST instead of the code in 
textual form. 

In .NET projects, the same namespace is usually scattered throughout different files. This 
means that there will be several nodes for the same namespace in the AST. So, first, all of the 
code units that belong to a particular namespace are brought together under a single 
namespace node in the AST. This is done by the MergeNamespaces method from the 
Namespace Composition concern. Then, inside each namespace, the partial classes with the 
same name can be composed into a single class. This is done by invoking the 
MergePartialTypes method from the Partial Type Composition concern. Finally, Hyper/Net 
method composition directives can be processed in the AST. To process merge and override 
directives, the MergeMethods method is invoked from the Language Features dimension, 
Merge concern. Then, to process bracketing directives, the ApplyBracketing method is 
invoked from the Language Features dimension, Bracket concern. Finally, the output 
language is used to generate the composed code output in the desired language. This is done 
by invoking the GetCode method from the Parsing concern. The SaveToFile method, from the 
Output concern, is used to write the generated code to the target file. 

Unless stated, unrecoverable errors detected inside the invoked methods are communicated 
through exceptions for which the Main method provides a single exception handling point. 
This exception handling point simply prints the error and returns from the application with an 
error code of -1. 

Features - Input 

 

Figure 25. The partial class diagram for the Input concern. 
The respective source code can be found in Appendix - I.2.2. 

 

This concern contains a single method of the MainClass: LoadMergedSourceCode. It receives 
as input the path to an MSBuild XML project file. It opens that project file using the .NET 
System.IO.File class Open method. Then, it initializes a .NET XmlReader object that is used 
to search for EmbeddedResource XML elements. These identify the files in the project that 
were developed using the MDSoC approach and will require composition. For each 
EmbeddedResource element, the include attribute is read to get the relative path for the file. 
Each of these files is then opened (also using System.IO.File), read with a StreamReader 
object and concatenated to a string variable. At the end of the process, this string variable 
holds the concatenation of all code in the project that needs to be composed by Hyper/Net. 
Finally, the concatenated code string variable is written to a file that can be used to help 
debugging. The SaveToFile helper method, from the Output concern, is used for this purpose. 
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Features - Kernel 

 

Figure 26. The partial class diagram for the Kernel concern. 
The respective source code can be found in Appendix - I.2.3. 

 

This concern provides a constructor for the SourceCode object. This constructor takes two 
arguments. The first is a string containing the source code. The second a SupportedLanguage 
enumeration value which identifies the source code language according to NRefactory 
classification. Hyper/Net is limited to processing the languages supported by NRefactory. If 
the parser was replaced, this concern would have to be changed. Instead of using the 
SupportedLanguage as provided by NRefactory, the Parsing concern should hide this 
enumeration behind one of its own. This way, if the parser was changed, other concerns, like 
the Kernel concern, would not be affected. 

The constructor initializes the respective local variables. One of them, the language of the 
source code, is made publicly available for reading. The source code string is available 
indirectly through the ToString method, which is also implemented in this concern. 

Features – Output 

 

Figure 27. The partial class diagram for the Output concern. 
The respective source code can be found in Appendix - I.2.4. 

 

This concern adds an output helper method to the MainClass: SaveToFile. SaveToFile takes 
as arguments a filename and a string (eventually containing code in text format). It simply 
writes the string to the file using two objects from .NET System.IO: File and StreamWriter. 
This method was created to avoid repeating this task in the places where it is used in the rest 
of the code. 

As for the SourceCode object, this concern provides a read-only Code property. In case the 
code has not been parsed yet, this property returns the source code string directly. Otherwise, 
it uses the GetCode method, from the Parse concern, to generate a string version of the current 
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parser AST, in the language of the original source code. Functionality from both the Kernel 
and Parse concerns is involved in this process, making this concern depend on them. 
Nevertheless, these can be replaced with equivalent concerns that offer the same functionality. 

Features – Parse Preparations 

 

Figure 28. The partial class diagram for the Parse Preparations concern. 
The respective source code can be found in Appendix - I.2.5. 

 

This concern adds a FactorizeImports method to the SourceCode object. This method takes 
the objects’ source code in text form and moves all using/import directives to the beginning of 
the string. This is necessary to be able to parse the source code. 

The implementation is straightforward. The sourceCode string variable, of the SourceCode 
object in the Kernel concern, is searched for statements beginning with “using”, or “Imports”, 
in case the source code language is VB.NET. Each time such a statement is found, it is added 
into a hashtable, unless that statement already exists there. It is also removed from the source 
code. Afterwards, the directives in the hashtable are concatenated at the beginning of the 
objects’ source code string. By manipulating the sourceCode variable from the Kernel 
concern, this concern depends on it. 

Features - Parsing 

 

Figure 29. The partial class diagram for the Parsing concern. 
The respective source code can be found in Appendix - I.2.6. 

 

Parsing is provided by a Parse method in the SourceCode class. This method obtains an 
NRefactory Parser object, for the source code language, using the NRefactory ParserFactory. 
The source code string is also passed to the Parser object when it is obtained from 
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ParserFactory. Then, the code is parsed (Parser.Parse method). The AST that results from 
parsing can be accessed through the CompilationUnit property of the Parser. In case there are 
errors, the method fails by returning false. These errors can be accessed in string format 
through the SourceCode ParseErrors property. This property obtains the errors in string 
format from the parser’s Errors object. 

This concern also implements the GetCode method, which uses the NRefactory parser to 
generate a string version of the current parser AST, in the desired language. It does so by 
creating a language specific NRefactory visitor object, either CSharpOutputVisitor or 
VBNetOutputVisitor. This object is then passed to an AcceptVisitor method of the Parser 
CompilationUnit property, which holds the AST. Here we are using a visitor design pattern 
implemented by NRefactory. The AcceptVisitor method returns the output code as a string 
which is then returned by the GetCode method. This concern depends on the Kernel concern 
and on the NRefactory library. 

Features – Namespace Composition 

 

Figure 30. The partial class diagram for the Namespace Composition concern. 
The respective source code can be found in Appendix - I.2.7. 

 

Namespace composition is done on the AST that results from source code parsing. This 
process is implemented in the SourceCode class MergeNamespaces method. The method 
iterates through the AST in search of NamespaceDeclaration nodes. These nodes hold 
namespace declarations and, under them, part of the set of code units belonging to that 
namespace. Each NamespaceDeclaration node that is found is added to a hashtable, but only 
if that namespace does not exist there yet. In case it does exist, all of the 
NamespaceDeclaration node child nodes are copied to the NamespaceDeclaration node that 
was already in the hashtable. The duplicate NamespaceDeclaration node is added to a list for 
removal from the AST, which is done at the end of the method. After this process there will 
only be a single namespace declaration node for each different namespace and it will contain 
all of the units in that namespace, independently of the source code file they originally came 
from. By using the AST, this concern depends on the Parse concern. 

Features – Partial Type Composition 
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Figure 31. The partial class diagram for the Partial Type Composition concern. 
The respective source code can be found in Appendix - I.2.8. 

 

Partial type composition is achieved by the MergePartialTypes public method in the 
SourceCode class. It iterates the namespace declaration nodes in the AST. Inside each 
namespace declaration node, it searches for type declarations (TypeDeclaration nodes) that 
have a partial type modifier (Modifier.Partial). This finds partial types inside the same 
namespace. To match partial types of the same type, the method uses a new hashtable for each 
namespace that is iterated through. Each partial type found in the namespace is searched for in 
this hashtable. If it is not found in the hashtable the node is added to it, but, before, its partial 
modifier is removed. If there already is an entry in the hashtable for the partial type name, all 
of the found partial type child nodes are added to the matched type in the hashtable.  

Different partials classes of the same class type can only extend the same base type, but not 
all have to. Partial interfaces of the same interface type can extend any interface types. 
Furthermore, partial classes of the same class type can implement different interfaces. The 
equivalent whole type has to extend and implement all such types in its partials. To achieve 
this, each reference in the matched partial types is searched for in the equivalent type in the 
hashtable. If the reference is not already present, it is added. 

Non-repeated type attributes must also be copied from the matched partial types to the 
equivalent type. Due to its complexity, this is done in a local MergeAttributeSections method. 
A third similar requirement exists for type modifiers. Non-repeated type modifiers must be 
added from the matched partial types to the equivalent type in the hashtable. This is achieved 
in a very simple way. As already stated, the partial modifier is removed from all matched 
partial types. NRefactory represents modifiers as an enumeration. This way, the remaining 
partial type modifiers are added to the equivalent type in the hashtable using the OR 
assignment operator (|=) applied to its modifiers and the partial type ones. This results in any 
non existing modifiers being added to the type in the hashtable. 

Finally, all matched partial type nodes that are found are added to a list, except for new ones, 
which are added to the hasthtable. All members of this list are removed from the AST at the 
end of the process. 

The MergeAttributeSections method takes two attribute section lists as arguments. The 
purpose is to add attributes from the first argument to the second one, without introducing 
duplicates. In .NET, each attribute can be defined in its own section. But several different 
attributes can also be declared in the same attribute section. Because of this, the first attribute 
section list has to be iterated in its sections and in the attributes inside the sections. Each 
attribute is then searched for in the other attribute section list. If it does not exist there, then it 
is added to a return attribute section list. Finally, all of the attribute sections in the second 
argument are also added to the return list. 

This concern focuses on additive merging at class level. After merging partial types, there can 
be repeated method signatures inside classes. This is an issue for the Merge concern in the 
Language Features dimension, which is analysed further on. 



113 

Language Features – Bracket 

 

Figure 32. The partial class diagram for the Bracket concern. 
The respective source code can be found in Appendix - I.2.9. 

 

This concern introduces the ApplyBracketing method which transforms the AST by executing 
bracket composition. It iterates the AST hierarchically to find method declarations with the 
MethodBracket attribute. Each method is searched for a MethodBracket attribute using the 
GetAttribute method. This method currently belongs to the Merge concern. The Language 
Features dimension may not provide the best location for such shared helper methods. 
Possibly a new dimension should be introduced as these methods do not fit the Features 
dimension either. But this is an issue for future refactoring. 

When a method that has a MethodBracket attribute is found, the attribute is removed from it. 
This is done using another helper method, RemoveAttribute, also contained in the Merge 
concern. Then, a statement that places the method meta-information into a variable is injected 
at the beginning of the method. This is done by creating a LocalVariableDeclaration 
statement, using AST classes that represent fields and method invocations. This statement 
populates a MethodBase object from the .NET System.Reflection namespace using the static 
GetCurrentMethod method, found in the MethodBase class. A local method 
(InsertInMethodBody) was created to help introduce these statements at specific points of the 
method body. In this case, the statement must be inserted before the remaining method body 
(position zero). The meta-information about the method will be passed to before and after 
methods, when they are invoked. 

At this point, if the MethodBracket attribute defines a non null beforeMethodByName 
variable, a method invocation statement is created and introduced before the method body 
original code. Again, the invocation statement is constructed using AST classes. The 
beforeMethodByName variable is used to identify the method that is invoked. This method 
receives two arguments: the base method meta-information variable and a parameter array 
containing the parameters received by the base method. Also using the InsertInMethodBody 
method, this invocation statement is introduced in the second position of the method body, 
after the method’s meta-information variable is populated. 

Finally, if the MethodBracket attribute defines a non null afterMethodByName variable, a 
method invocation statement is created. Then, the base method body is searched for return 
statements. Each return statement is replaced by an invocation of the after method. This 
invocation receives the same arguments as the before method and, additionally, the original 
return statement expression. In case no return statements are found during this process, then, 
an invocation of the after method is created with the same arguments as the before call and a 
null return value argument. It is added at the end of the base method body. 

Adding a statement to the end of a method body using NRefactory is trivial. The statement is 
simply added as a child node of the method.Body BlockStatement object. Replacing a 
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statement node (like return statement nodes) is also trivial: the Expression field of the 
statement is simply replaced. Still, the method body is represented as a BlockStatement object. 
This object does not allow adding statements except at the end of the block (method body). 
To add statements to a specific position (like the beginning of the method body), the 
InsertInMethodBody method had to be introduced. This method iterates through the 
statements in the method body, from the end to the position where the new statement is to be 
added. Each statement iterated through is removed into a .NET List. The new statement is 
added to the method body when the adequate position is reached by this iteration. At this 
point, all subsequent method body statements have been removed. The new statement can 
simply be added like a last statement of the method body. Afterwards, the statements kept in 
the list are added back at the end of the method body. This is done in the reverse order of 
which the statements were introduced into the list. 

It is easier to cope with necessary changes to attribute definitions by having this concern exist, 
in a decomposed form, in the console application project. If bracket attributes have to be 
extended for further expressivity, the only code in the console application project that is 
affected will be located in the Bracket concern. Furthermore, a version of Hyper/Net without 
bracketing features could be built by removing the directory for this concern from the project. 
The invocation of the ApplyBracketing method from the Run method in the Flow Control 
concern also has to be removed. If the current Hyper/Net version was used to decompose 
Hyper/Net source code methods, namely the Run method in the Flow Control concern, the 
invocation of the ApplyBracketing method could also be decomposed into this Bracket 
concern. 

Language Features – Merge 

 

Figure 33. The partial class diagram for the Merge concern. 
The respective source code can be found in Appendix - I.2.10. 

 

This concerns offers merge and override method composition through the MergeMethod 
public method. It also contains a set of necessary support methods which are private. Unlike 
the bracket implementation, MergeMethod does not directly search for particular attributes. 
Yet, it uses a similar hierarchical iteration in namespaces, their types and, then, each type’s 
methods. For each method found, the containing class is searched for all methods that have 
the same signature. The comparison between each pair of methods is done using the 
EqualMethodSignatures method. If another method with the signature of the current method 
is found, any MethodMerge attribute applied to it is obtained (using the local GetAttribute 
method) and its MethodMergeAction is checked. This allows determining the type of 
composition defined: override or merge. When an override MethodMergeAction is found, if 
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another such attribute had already been found for the method signature being searched for, the 
MergeMethod method throws an exception, stating that only one override composition 
attribute is allowed. Similarly, if override attributes coexist with merge attributes, for the 
same set of matching methods, an exception is thrown, because override composition is 
incompatible with merge composition. 

When all the methods inside the class have been compared with the current method, it is 
known how many matching methods exist and how these should be composed. The simplest 
case is when there is a single method and it has a merge attribute applied to it. This case is 
dealt with by removing the attribute from the current method and continuing the search with 
the following methods in the class. Attributes are removed using the local helper method: 
RemoveAttribute. 

If more than one method was found with the same signature and none had composition 
attributes, then an exception is thrown, stating there must be at least one MergeMethod 
definition for repeated methods. 

If an override attribute was found, the matching method declarations in the same class are 
iterated again and all, except the one with the override attribute, are added to a list of methods 
to be removed. At the end of the iteration inside the class, this list will be iterated through and 
all methods in it are removed from the class. 

Otherwise, if the attributes define a merge composition with more than one method involved, 
a new method declaration is constructed. This declaration has the signature of the matching 
methods, including the name. Its body, a BlockStatement object, will then be populated. To 
help in this process, two lists are kept, while the current class is iterated through once again. 
One of these lists will hold the method invocations for the methods that are being merged, in 
the order defined by their priorities. The other, will hold the return variables where the results 
of each of these method invocations will be kept. First, the current class is iterated through 
once again, to locate the methods being merged. Each method is renamed, by concatenating 
an increasing integer variable to the method name. It is also made private. A method call 
statement for this renamed method is created using the local method CreateMethodCall. Next, 
the priority of the method and a merge results method are obtained, if present in the methods’ 
MethodMerge attribute. In case the method invocation returns a value, a variable to contain 
the result is also declared and initialized with the invocation of the renamed method. The 
uniqueness of its name is guaranteed like with the renamed method name, using the same 
integer variable. In this case, the result variable is added to the list of return variables, using 
the inverse order of the priority declared in the attribute. It is also added to the invocations 
ordered list, also using the inverse of the attribute priority. In case the methods have a void 
return, only the renamed method invocation is added to the invocations list. The 
MethodMerge attributes of the renamed methods are removed, again using the 
RemoveAttribute method. Finally, the attributes of the renamed method are moved (copied 
and removed) to the new merged method declaration. 

When all the matching methods in the class have been iterated through, the renamed method 
calls are introduced into the merged method body, according to their order of priority. If there 
is a result merging method, a new variable is declared and initialized with a call to the result 
merging method. This call is done with a list of arguments obtained from the list of return 
variables. This variable declaration is added at the end of the merged method body, along with 
a return statement, returning this variable. 
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Finally, the merged method is added to a list of methods that are to be added to the class. At 
the end of class iteration, this list is iterated through and any contained methods are added to 
the class. 

The GetAttribute method abstracts the complex process of getting the first attribute, in a 
particular method, which has a specific attribute type. Different attribute sections can exist; 
these have to be iterated through, as well as the contained attributes themselves. When an 
attribute with the desired type is found, it has to be processed for arguments. Each argument 
has to be converted from an AST expression form into the adequate .NET type and have its 
value extracted. This is done by analysing the different possible kinds of attribute argument 
expressions, adequately extracting their type and value, processing the value (for instance, 
parsing an integer representation) and adding it to a list. Finally, this list is used to initialize 
an object of the attribute type. 

Fortunately, removing an attribute is simpler. Still this task was abstracted into the 
RemoveAttribute method. Like GetAttribute, it also iterates attribute sections and their 
attributes. Any attributes that match the desired type are added to a list for removal. This is 
done after the each attribute section is iterated through. If the attribute section itself is empty 
after the attribute type is removed, it is also added to a list for removal at the end of the 
process. 

The EqualMethodSignatures method first checks if the two method declaration objects 
(MethodDeclaration) that are passed as arguments return the same type. If not, their 
signatures are not equal. Then, it compares the number of arguments of each method. If they 
are equal, it compares the argument types one by one. If everything matches, the methods 
have the same signature. The method names should also match, but this check is done outside 
this method. This allows using it for a more generic comparison of method signatures, without 
comparing method names. 

The AST structure for calling a method can be obtained using the method declaration itself. 
Still, this structure is not straightforward. The CreateMethodCall method was introduced to 
abstract this process. First, a FieldReferenceExpression object is created from the method 
name. It is used to create an InvocationExpression object to which the method parameters are 
added, one by one. This assumes that the method parameter names are available at the calling 
scope. The InvocationExpression object is then returned. 

8.2.3 Testing Hyper/Net 
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Figure 34. The partial class diagram for the Tests concern. 
The respective source code is not available because this is a minimal test implementation. There is a lot of 

sample code involved in the tests so it would take up much space without providing enough benefits. 
 

The code that provides testing functionality for Hyper/Net could be seen as defining its own 
dimension. Due to its size, it is only made up of a single concern. There has not been much 
emphasis on testing Hyper/Net functionality thoroughly yet. There are only a few detailed 
tests, like the TestMethodMergeAttribute, that validates basic features of the MethodMerge 
attribute with an override MethodMergeAction. The MainClass also contains several blocks of 
code focusing different situations with bracket, merge and override composition. It also 
contains a VB.NET code example and an example that is invalid C# code. All of these can be 
processed using the two Tests class methods. 

This concern is a good example of a concern where the object dimension is locally 
representative. As for the rest, only another concern, the Output concern, contains more than 
one class. The other concerns are not so balanced because Hyper/Net is mostly broken down 
into the MainClass and the SourceCode classes. MainClass captures elements from the Flow 
Control and I/O concerns. SourceCode captures elements from the Language Features 
concerns and Features concerns that used to prepare the code to be processed by the language 
features. Some code refactoring, that should be done to enhance comprehensibility and 
Hyper/Net evolution, is expected to develop the object dimension further and, possibly, end-
up with a more dispersed object dimension, in relation to the other dimensions of concern. 

8.3 Conclusions 

One of the most adequate ways of looking at Hyper/Net is from the perspective of the Time 
dimension. As with normal command line applications, Hyper/Net processing starts and ends 
with I/O oriented tasks. It processes entire .NET projects, but only a single source code file is 
generated. The reason for this is that the parser used by Hyper/Net can only process a single 
block of source code. This requires that the source code from the files in the project is 
concatenated into a single string. Preparing this string for parsing and parsing it are the two 
processing steps that follow the initial input steps. Before the actual Hyper/Net attribute 
composition takes place, two other native .NET composition steps are taken, composing 
namespaces and partial types. Merge and override composition is processed first, in a single 
step. It is followed by bracket composition which leaves the code ready for output. All of the 
composition steps work with the AST version of the source code. 

While the Time dimension is a virtual one, there are four other dimensions in Hyper/Net that 
are physical. A project dimension divides Hyper/Net into a public class library, which should 
be referenced from projects that use Hypert/Net, and the actual source code processor, which 
is a console application. There is also a Features dimension where a Flow Control concern 
operates the different processing stages. It does this by invoking other features, which are also 
concerns in the Features dimension, and Hyper/Net specific language features. These specific 
language features implement and provide declarations for Hyper/Net attribute composition 
and belong to their own dimension, the Language Features dimension. Finally, there is a Test 
dimension with simple ad-hoc tests. Curiously, the Features and Language Features 
dimensions, together, almost implement the (virtual) Time dimension.  

By adopting the MDSoC organization of Hyper/Net for this chapter, it was fairly simple to 
address each requirement implemented by Hyper/Net down to the full detail of the 
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implementation (code artefact). Each concern is focused at a time, providing a simple yet 
complete and detailed description. 
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Chapter 9  

 

Comparing MDSoC implementations 

The topics addressed in the previous chapters are inter-related, in particular the MDSoC 
implementations presented in Chapter 5 and Chapter 6. But these were not compared, except 
for some particularities. This chapter provides such a comparison between MDSoC 
implementations. This comparison is done according to groups of criteria, similar to those 
used to analyse each implementation. The evaluation according to these criteria is 
summarized in a table. Then, each group of related comparison criteria is analysed in more 
detail in its own section.  

9.1 Comparison criteria 

The criteria for this comparison were chosen according to the criteria by which each MDSoC 
implementation was analysed in Chapter 5 and Chapter 6 and can be grouped as follows: 

� Context – The first set of comparison criteria addresses the context in which the 
implementations can be used. These range from the artefacts and formalisms 
(programming languages) that can be used, to the context of these solutions in terms of the 
standard compilation process and whether they require using any additional software. 

� Hyperslices – Compares the hyperslice implementations that can be used, the smallest 
composable units and whether declarative completeness can be achieved. 

� Hypermodules – Focuses on the implementation of composition provided by each 
solution. The individual criteria are: the number of coexisting hypermodules that are 
possible, whether the composition definition is mixed with the code, which composition 
strategies and exception relationships are usable and, finally, which composition functions 
are supported. 

� Reuse – Addresses hyperslice and hypermodule reuse limitations. 

� Usage – Compares how the implementations can be used for different tasks and scenarios. 
The usage scenarios that are addressed are: usage from scratch, to introduce new features 
to existing code, to decompose existing code, to mix-and-match concerns and usage 
without source code. 
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� Other limitations – Address additional limitations that could not be captured with the 
other criteria. 

9.2 Comparison summary 

Table 1 summarizes the comparison of MDSoC implementations in terms of the most relevant 
points. Each is addressed in more detail afterwards. In this table, the most interesting results 
for each point of comparison are highlighted in bold. 
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  Hyper/J HyperC# Partial Types Hyper/Net 
Artefacts Code Code Code Code 

Formalisms Java C# Any .NET 2.0 (or 

above) language 
C# and VB.NET 

Compilation 

context 

Intermediate language 
weaver 

Source code 
transformation 

Source code 
transformation 

Source code 
transformation 

C
o
n

te
x

t 

Introduces 

additional 

software 

Yes Yes No Yes 

Hyperslice 

implementation 

model 

Physical + Virtual 

Physical + Limited 
virtual 

decomposition 
Physical Physical 

Composable 

primitive units 

Type members 

(methods, variables, 

etc.) 

Methods Partial types Methods 

H
y
p

er
sl

ic
es

 

Declarative 

completeness 
Possible 

Not supported for 
methods 

Possible for types 
(classes, interfaces) 

Possible for types 
and methods 

Supported 

hypermodules 
∞∞∞∞ 

∞, each limited to a 
single class output 

1 per .NET project 1 per .NET project 

Composition 

definition separate 

from code 
� � � � 

Composition 

strategies 
1 per hypermodule 1 per hypermodule27 

Static: composition 
defined by partials 

Static: composition 
defined by partials 

Composition 

relationships 

Scope: all units but 

packages 

Limited to 1 bracket 
and 1 equate

28
  (for 

methods) 
None 

Scope: only for 
methods H

y
p

er
m

o
d

u
le

s 

Supported 

composition 

functions 

Merge, Override, 
Bracket 

Merge, Override, 
Bracket 

- 
Merge, Override, 

Bracket 

Hyperslice reuse � � 
Need to anticipate 

composition in 
reuse scenario 

Need to anticipate 
composition in 
reuse scenario 

R
eu

se
 

Hypermodule 

reuse 
� 

Limited by the 
single class output � � 

Used to decompose 

existing code 
� �29 � � 

Used from scratch � � � � 
Used to introduce 

new features � �29 � � 

Used without 

source code � � � � 

U
sa

g
e 

Mix-and-match � � � � 
 

Other limitations 

Significant 
implementation 
limitations that 

invalidate certain 
features (see Subsection 

5.1.4) 

Developers need to 
program in an 

extremely limited 
GUI 

- - 

 

Table 1.  Comparison chart of MDSoC implementations. 
 

                                                
27 But only generates a single output class. 
28 Equate applies the composition strategy composition function to any pair of non matching methods. 
29 But the code needs to be input manually in the HyperC# GUI. 
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9.3 Context 

All of the four MDSoC implementations presented herein are limited to the code artefact. 
Two of them (Hyper/J and HyperC#) are limited to a single language while the remaining two 
(.NET partial types and Hyper/Net) support more than one language, but not simultaneously. 

Only the first of these MDSoC implementations, Hyper/J, operates after source code is 
compiled (into Java bytecode). The remaining implementations work previously in the 
compilation process, as source code pre-processors. These implementations output composed 
code that afterwards is compiled using standard compilers.  

All MDSoC implementations analysed but one need to introduce additional software that is 
specifically targeted for MDSoC composition. .NET partial types are a native feature of .NET 
2.0 languages and support a basic MDSoC model that requires no specific software, other 
than a standard .NET compiler. This fact has the advantage that there is already a large user 
base that can benefit from this approach in their existing development environments. The 
other implementations require installing software and, usually, setting up the development 
environment for MDSoC. 

9.4 Hyperslices 

Another comparison element is the way MDSoC hyperslices can be implemented in each 
approach. Hyper/J is the only approach that supports near limitless virtual decompositions. 
HyperC#’s support for virtual decomposition is limited to decomposing methods virtually. 
This is further limited by a physical implementation for the virtual method decompositions. 
Hyper/Net does not support virtual decomposition at all.  

In MDSoC, virtual decomposition is important when units are indecomposable. But, when 
units are actually decomposable, the physical decomposition model should be used instead. 
Fortunately, the physical decomposition model is supported by all of the analysed approaches. 
Each approach supports the physical hyperslice model using different structural elements. 
Hyper/J proposes “Hyperslice Packages”, where each hyperslice is implemented by a 
particular package (see Subsection 5.1.1). Hyper/Net and the partial types approach use 
directories in a similar fashion (see Section 6.1). Finally, HyperC# uses a GUI to represent 
hyperslices and their contents, but behind the scenes implements hyperslices physically in 
different classes that are prefixed with the hyperslice name (see Subsection 5.2.1). 

The physical hyperslice implementation model allows developers to manipulate the MDSoC 
hyperspace structure and contents directly. It provides something tangible that developers can 
see and work with. Also, by structuring hyperspaces using physical entities that most 
developers are already acquainted with, namely packages and directories, hyperspaces 
become more familiar. These advantages of the physical hyperslice model make it the model 
of choice whenever it is possible to physically decompose units. Units should only be 
matched to more than one hyperslice, using virtual decomposition, when they cannot be 
physically decomposed. Virtual dimensions will provide alternative views of a hyperspace. 
For the benefit of developers, virtual dimensions can become almost as usable as physical 
dimensions by allowing their direct manipulation, for instance, using IDE visualization and 
editing plug-ins. Yet, neither of the implementations that somehow support virtual 
decomposition (Hyper/J and HyperC#) offers such a feature.  
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Another defining aspect of MDSoC implementations is the granularity down to which it is 
possible to decompose units that latter can be composed. As defined in Section 3.2, the 
smallest units resulting from decomposition are primitive units. Different MDSoC 
implementations support composing primitive units at different levels of granularity. 
Supporting lower levels of granularity provides more power in decomposition and 
composition. Methods are primitive units in Hyper/J, HyperC# and Hyper/Net. The .NET 
partial types approach only supports primitive units at a higher level of granularity: partial 
types, which are slightly below the granularity of classes. While the only primitive units 
supported by HyperC# and Hyper/Net are methods, Hyper/J supports composing other kinds 
of primitive units, like variables and other class members. Simultaneously, Hyper/J supports 
composing units at higher levels of granularity. This is crucial in terms of the expressive 
power of MDSoC implementations. The other approaches also support higher level 
compositions, at class level, but only in a static fashion. HyperC# composes all input classes 
into a single class, while .NET partial types and Hyper/Net compose matching partial types 
into a single type. 

As MDSoC hyperslices can reference units that are outside them, some consider that these 
hyperslices should be declaratively complete. Declarative completeness is fully possible with 
Hyper/J. As for the remaining implementations, it is only possible for particular unit types, 
like types and, in the case of Hyper/Net, also for methods. We consider these limitations to be 
unimportant. Our view on the need for declarative completeness has already been presented at 
the end of Subsection 6.1.1. Declarative complete hyperslices that are not composed with 
other hyperslices, offering the required units, will only yield errors during runtime, when 
these units are used. Without declarative completeness these errors will be detected earlier on, 
during compilation, which is always better for the developer. 

9.5 Hypermodules 

As for composition, all the implementations allow the creation of as many hypermodules as 
required for a given hyperspace. But only Hyper/J has no particular restrictions on these 
hypermodules. HyperC# only outputs one class for each hypermodule. This does not allow 
using hypermodules to directly create most of the outputs desired (for instance, a class 
library), which usually need to include more than one class. There are workarounds for this 
issue. Namely, to bring each class that is output by a different hypermodule under a single 
project that is then compiled. Yet, this is not a natural way to program with MDSoC because 
it forces developers to think in terms of the classes that are output, one by one. It is clearly 
forcing developers to think in terms of the object dimension. As for the remaining 
implementations, both Hyper/Net and the partial types approach need to use one project to 
implement one hypermodule. Apparently, this could be almost as limited as having 
hyperspaces made up of a single project and having only one hypermodule defined for it. In 
particular, a hypermodule that always includes the entire hyperspace. But, in fact, with both 
approaches, it is possible to have hyperspaces that span several different projects. In these 
hyperspaces, hypermodules can compose units from different projects by being defined 
through a new project which includes the desired units using one of the linking approaches 
discussed in Subsection 6.1.3. This solution is almost transparent for the programmer and 
provides as much versatility as Hyper/J’s multiple hypermodules. 

Hyper/J and HyperC# allow defining a composition strategy that is applied to each 
hypermodule. In Hyper/Net and the .NET partial types approach, the composition strategy is 
statically defined by partial type composition. With their static composition strategy, these 
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approaches have a more limited composition expressiveness that cannot be overcome with 
composition relationships. 

When it comes to composition function support, all implementations, except for .NET partial 
types, offer the same composition functions: merge, override and bracket. .NET partial types 
implement a single, merge-like, composition function for partial types. It is applied as part of 
the .NET partial types composition strategy and cannot be applied in an ad-hoc fashion (as 
composition relationships). In Hyper/J, all composition functions can be used in an ad-hoc 
fashion in composition relationships, involving all units but packages. As for Hyper/Net, it 
only supports composition relationships involving methods. HyperC# is also limited to the ad-
hoc composition of methods. It further limits this composition by allowing only the usage of 
one bracket composition function and one equate composition relationship per hypermodule. 
Recall, from Subsection 5.2.2, that the equate composition relationship will apply the 
composition function defined by the composition strategy to a given pair of non-matching 
methods. 

The composition information in a hypermodule can be seen as metadata. It can coexist with 
the code, sometimes being part of it, or, it can exist separately, referencing the code as 
required.  The first option was taken with the partial types approach and Hyper/Net, where 
composition information coexists with and is part of the code. On the contrary, in Hyper/J and 
HyperC#, it exists separately from the code, in specific files. The main advantage of having 
composition information separate from code is the ability to reuse either (code or 
composition) whenever it is appropriate.  

9.6 Reuse 

Hyper/Net and the partial types approach allow very limited reuse because they mix 
composition information with the code itself. When composition information coexists with 
code, it might be easier to understand the units that are involved in compositions, by having 
that information next to the code it affects. This is the only advantage of this coexistence. 
When composition information is separate from code, the same advantage can be provided by 
specific tools that read composition information and represent it next to the code it affects. 
Still, none of the analysed implementations offers such tools at this point. 

In terms of hyperslice and hypermodule reuse, Hyper/J provides the best support, allowing 
hyperslice and hypermodule reuse without particular limitations. HyperC# follows, with the 
only limitations imposed on hypermodule reuse by its single class output. Hyper/Net and 
.NET partial types provide very limited reuse features. They do not allow hypermodule reuse 
due to relying on partial type composition, which can only take place inside the same project 
and cannot involve types that are not partial. This excludes the types that are output by 
hypermodules. As for hyperslice reuse, both implementations are limited by the need to 
anticipate the reuse scenarios by introducing partial types that match for all expected reuse 
scenarios. This is a consequence of mixing composition information with code in both 
implementations. 
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9.7 Usage 

In terms of usage scenarios, all implementations provide similar support. All can be used from 
scratch, to decompose existing code, to introduce new features into existing indecomposed 
code and to mix-and-match concerns. Due to its context in the compilation process, the only 
implementation that supports composing software without source code is Hyper/J. It can be 
used to decompose, mix and extend existing applications for which there is no source code. 
The other implementations lack these features. 

9.8 Other Limitations 

Hyper/J is implemented with several technical limitations. These disallow some of the 
features discussed. Still, Hyper/J should support the full announced feature set if these 
technical issues are overcome. As is, the most relevant effects of these technical limitations 
are disallowing composition relationships using merge and override composition functions 
and outputting all composed units as public. As for HyperC#, it is possibly the least 
programmer friendly approach, due to its need to use a specific GUI to define classes. This 
GUI is extremely limited and unnatural. If HyperC# used a parser to gather metadata about 
the code, it would not need the GUI and would provide a much more interesting 
implementation. As for .NET partial types and Hyper/Net, no limitations other than the ones 
already mentioned have been identified. 

An unfocused element of comparison is support for traceability of compilation errors and 
debugging. Implementations working with source code are usually more limited in this field 
as they rely on specific compiler and debugger support for mapping the composed code to the 
original code. Solutions that work after the decomposed code is compiled can rely on standard 
compiler and debugger support for the decomposed code, providing a more adequate 
developer experience. This way, Hyper/J is expected to provide the best support in this regard. 
As for the other implementations, by being a native approach, using standard .NET compilers, 
the partial types approach also provides error reporting and supports debugging relative to the 
decomposed code. Hyper/Net also provides some level of error reporting relative to the 
decomposed code, in particular, parsing and composition errors. 

9.9 Conclusions 

Hyper/J has been available for download from IBM since 2000 and the latest version 
available is from 2003 [HyperJ03]. It can be considered the less limited MDSoC 
implementation, with rich composition expressiveness (which can be used at diverse 
granularities), excellent reuse capabilities and being the only one that is able to decompose 
compiled code. HyperC# is not publicly available and is mostly limited by its particular GUI 
approach that forces developers out of their IDEs. The biggest limitations in .NET partial 
types and Hyper/Net are dictated by mixing composition information with code, which is 
imposed by the usage of partial types as a native composition mechanism. Enhancing 
Hyper/Net reuse is one of the major issues presented for future work in Section 10.3. 

We wrap-up our analysis by highlighting the points where each implementation surpasses the 
others: 
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� Hyper/J: composition expressiveness (at diverse granularities); excellent reuse. 

� .NET partial types: being native. 

� .NET partial types and Hyper/Net: supporting more than one language. 

It would be desirable to agglomerate these features in a single MDSoC implementation.  
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Chapter 10  
 

Conclusions and Future Work 

This chapter is organized in four sections. Section 10.1 provides an evaluation of the results 
achieved as part of our thesis. It also tells of additional knowledge transfer experiences related 
with Hyper/Net. Section 10.2 presents the history of the development of Hyper/Net and 
summarizes parallel developments and investigations, not presented in this document. 

Section 10.3 presents several topics that should be addressed by future work. Most future 
work is directed towards Hyper/Net, which at least requires to be leveraged with the features 
of other implementations, in particular, Hyper/J. A more ambitious perspective sees 
Hyper/Net as a prototype with which it is possible to gather and evaluate more elements 
regarding different aspects of MDSoC composition. This allows addressing other issues for 
future work that fall outside the strict boundaries of the code artefact, under a unified MDSoC 
perspective.  

To end this chapter, Section 10.4 provides a few final remarks.  

10.1 Results 

Recall, from Section 1.1, that this thesis had three chained goals. The first was to discover or 
develop a method to use MDSoC while programming with .NET. The next was to implement 
the classic Expression SEE example using this method. Finally, the last was to validate the 
results of the Expression SEE example with adequate tests, in particular, ones that could test 
different flavors of the example obtained by mix-and-match. 

With the .NET partial types approach and Hyper/Net, the first goal was achieved. These 
approaches have reuse limitations, but reuse was not the focus of our goal. There are also 
some other limitations, focused in Subsection 6.2.3 and in Chapter 9, but these may be 
overcome in future versions of Hyper/Net as will be proposed for future work. Both 
approaches allow programming in the existing development platforms and have little impact 
on existing development processes, apart from allowing the adoption of MDSoC. 

As part of our goals, our MDSoC implementation for .NET had to be validated. We followed 
two different paths to do this. The first was to implement and thoroughly test a classic 
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MDSoC example. The second was to validate our work with peers from different 
communities by means of public presentations. 

10.1.1 The Expression SEE case study 

With Hyper/Net, it was possible to implement the Expression SEE example from MDSoC 
literature, as documented in Section 7.5. Only the logging feature could not be implemented 
as easily as documented in MDSoC literature due to the limited Hyper/Net matching 
mechanism. Caching was another feature proposed in MDSoC literature [Ossher99] but could 
not be easily implemented in either Hyper/Net or Hyper/J due to the lack of support for 
around functionality in bracket composition. 

Finally, the expression SEE example was tested using unit tests. Composed behavior was 
adequately tested using the override and merge composition of unit test methods. Our testing 
approach showed it could cope with the removal and introduction of the concerns in this 
example, thus, being compatible with mix-and-match. 

10.1.2 Public presentations 

Apart from this document we were also able to validate the results by both publishing a paper 
with some results and then performing public presentations to communities from the fields of 
Aspect-Oriented Software Development (AOSD), Intelligent Transport Systems and 
Microsoft .NET software development.  

The first public presentation of our work was done at an AOSD workshop in Spain [Dias06]. 
There, we presented an overview of Hyper/Net and demonstrated its usage to extend a basic 
version of the Toll example presented in Section 7.4. We also did a presentation on the usage 
of design-patterns and MDSoC for Intelligent Transport Systems software, as part of a 
workshop promoted by a Portuguese motorway operator [Dias07]. This presentation 
referenced the advantages of MDSoC in comparison to design-patterns, when used for ITS 
software, also using the Toll example. 

Finally, in March 2007, we were invited to present this work in an hour and a half session at 
Microsoft’s TechDays event in Portugal. This event is directed towards developers and IT 
professionals working with Microsoft technologies, which are the focus of most sessions. Our 
session was titled “Aspect-Oriented Programming in .NET” and was included in the 
development track of the event. It introduced Aspect-Oriented Programming, presented and 
compared AOP solutions for Microsoft .NET and showed how MDSoC could be used to 
introduce a symmetric approach to address the same issues as AOP. This session also 
provided live demonstrations using an AOP tool (AspectDNG) and Hyper/Net. The 
attendance figures for this session, provided by Microsoft, were unexpected. The room only 
had 20 seats but it was able to accommodate the 58 attendees. Out of these, 40 filled in an 
evaluation form, rating the session at 6.36 on a score from 1 to 9. 

Papers and presentations for all these sessions are publicly available at the author’s 
homepage: http://ptsoft.net/tdd/. Some materials are only available in Portuguese. 
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10.2 The history of Hyper/Net 

Hyper/Net started out as an implementation project to support the writing of a paper for a 
course on Advanced Topics in Software Engineering, which is part of the MSc curricula. We 
started out by using partial types to implement the Expression SEE example in C#. Soon, we 
felt the need to compose methods so we could fully implement the Expression SEE example, 
but, partial types do not support this. At that time, there were no MDSoC implementations 
that supported C#. HyperC# was not publicly available and a paper about it [Hantelmann06] 
was still to be published. This was when we decided to implement Hyper/Net and use it to 
compose the code for the finished Expression SEE example. The results of this work were 
summarized in a paper for that course and presented in class. This paper was selected for 
submission to a workshop on AOSD, held as part of the JISBD conference in Spain30. It was 
adapted and presented at the workshop on October 2006 [Dias06].  

The paper presented in Spain already identified the .NET partial types MDSoC approach and 
provided an example on how to use Hyper/Net in complement to this approach. Using 
existing development platform features to natively implement MDSoC was an innovation. 
This was why we chose to extend these topics for the MSc thesis documented herein. Much of 
our initial work was carefully reviewed and the conceptual model of our approaches was 
documented according to the MDSoC model presented in literature. Other MDSoC 
implementations were also further analysed, namely HyperC#, as [Hantelmann06] was finally 
published in the mean time. 

During the elaboration of our thesis, we also dedicated efforts to contextualize the MDSoC 
approach in terms of human cognition and in regards to other composition solutions, namely 
AOSD. These branches of our investigation have already provided interesting results and will 
certainly be focused in future publications. Including them in the context of our MSc thesis 
might risk dispersing the focus of our work, so we chose not to address these contextual 
topics. At this point we have done and have ongoing work on: 

� The investigation of the relations between MDSoC and the human cognitive model, as 
seen by cognitive sciences.  

� Completing the formal MDSoC model started by [Ossher99], according to information 
provided in an informal fashion in [Ossher99] and other MDSoC literature. 

� Using the MDSoC formal model to evaluate MDSoC implementations, including 
Hyper/Net. 

� Using the formal model to compare MDSoC and AOSD. 

10.3 Future work 

Several concerns for future work have already been identified throughout the previous 
chapters. We now focus some of these and present the more ambitious areas for future 
research. 

                                                
30 The homepage of the AOSD workshop at JISBD 2006, DSOA’06, can be found at 
http://www.dsi.uclm.es/personal/ElenaNavarro/DSOA06/. 
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Hyper/Net still has a long way to go in terms of composition expressibility. Extensions to the 
present Hyper/Net composition constructs are required, some more trivial than others. There 
is also a clear need to find a composition representation that supports better hypermodule and 
hyperslice reuse. To achieve this, Hyper/Net should be reviewed in terms of implementation. 
But, above all, there should be a prior analysis and design work around existing and missing 
functionalities. 

10.3.1 Extensions to Hyper/Net composition 

Hyper/Net uses the same attribute for expressing merge and override composition. This is an 
unnecessary confusion resulting from a design flaw. These should be expressed separately, by 
two different composition attributes. These two attributes could share common features by 
extending the same base composition attribute class. 

Mix-and-match is not suitably supported by override composition. Removing a concern which 
has an override composition attribute applied to a particular method will leave the remaining 
set of matching methods un-composed. To avoid this, it should be possible to introduce 
multiple override composition attributes and decide on which to enforce, based on the priority 
of each attribute. This would also benefit the composition of interfaces. Still, Hyper/Net could 
compose partial interfaces without requiring any composition attributes. Interfaces only 
provide member declarations and these must be equal in partial interfaces, so they can be 
matched. Hyper/Net could simply remove repeated declarations while composing partial 
interfaces. Composition attributes applied to interface elements would simply be ignored. 
However, this is only a hypothesis. An adequate design decision for interface composition 
requires further research, for example, in terms of what to do with member declaration 
metadata, like attributes and XML documentation comments. 

Hyper/Net only supports method composition. The composition of constructors, properties, 
and, eventually, variables should also be considered.  

10.3.2 Extending Hyper/Net support for reuse  

According to the MDSoC model, hypermodules should be reusable in new compositions (see 
Section 3.1). By allowing the definition of different hypermodules for the same hyperspace, 
the MDSoC model also supports hyperslice reuse. Subsection 6.2.3 identifies severe 
limitations in hyperslice and hypermodule reuse with Hyper/Net. That subsection traces the 
origins of these limitations to two facts: 

� Hyper/Net uses units from the code artefact – partial types and attributes – to express 
composition. 

� The units involved in Hyper/Net composition are fixed. For classes and interfaces, they 
must all be partials of the same unit type. For methods, they must have the same signature 
and belong to matching partial types. 

Subsection 6.2.3 also points out solutions to achieve adequate hyperslice and hypermodule 
reuse with Hyper/Net. Solving the first limitative fact requires separating the composition 
definitions from the code. This can be achieved by implementing composition constructs in an 
artefact of their own or, at least, in a separate concern of the code artefact. The second 
limitative fact requires extending Hyper/Net’s matching model with more powerful matching 



131 

constructs. Here, most MDSoC solutions use regular expressions to identify matching units. 
These could be adopted for Hyper/Net, but with the adequate care, as Hyper/Net is currently 
based on type and signature matching. Some of the properties of the current stricter matching 
model might also be desirable. Recall that Hyper/J lacks the possibility of matching 
signatures, which can be considered a limitation. 

10.3.3 Holistic MDSoC and Hyper/Net 

The previous sections focused future work dealing with necessary changes and extensions to 
Hyper/Net composition support in the code artefact. This section uses a holistic perspective of 
MDSoC to look at a broader scope of future work. 

Still inside the code artefact, each dimension introduces its own perspective of the code body.  
Hyper/Net does not support virtual decomposition. This way, each dimension will only 
contain the units that were physically decomposed into it. Virtual decomposition could be 
interesting in Hyper/Net to provide other useful dimensional perspectives31. These 
perspectives could then be used by developers to work with the units in their physical form, 
wherever they might exist. Providing such interaction would be an interesting IDE 
enhancement.  

As mentioned in Subsection 4.2.4, the IDE is becoming a central tool in the entire software 
development process. Thus, adequate support for MDSoC in the IDE is crucial. This 
motivated the efforts to integrate Hyper/Net with two .NET IDEs (these integrations are 
presented in Subsections 7.2.1 and 7.2.2). There were two main requirements guiding these 
integrations: 

� Retain the IDE support for one click builds. 

� Allow using auto complete and other IDE programming support features with MDSoC 
decomposed code. 

Even though both requirements were supported separately, none of the Hyper/Net IDE 
integrations supported them simultaneously. The build process implemented by each IDE 
should be investigated in more detail to search for alternatives that simultaneously realize 
both requirements of the integration. 

Another limitation of the Hyper/Net integration with IDEs is the inexistent error traceability. 
In the future, these integrations and Hyper/Net itself should be enhanced in order to allow 
tracing syntax, composition and other errors to the decomposed source code and show them 
like errors are normally presented in the IDEs. A similar approach is also necessary for 
debugging. 

Typically, MDSoC hyperspaces are defined prior to program compilation. To change the 
hyperspace of a running program, for instance to add or remove hyperslices, the program 
must be separately recompiled, stopped and replaced. Adding and removing MDSoC 
hyperslices from a running program is a valid requirement. Hyper/Net does not support such 
dynamism, as most other MDSoC implementations do not either. This kind of support would 
require a different integration approach. Hyper/Net currently works with source code. To be 
able to change runtime behaviour it would have to work with intermediate code, integrated 

                                                
31 With the current Hyper/Net version and the Visual Studio IDE it is possible to navigate the Object dimension 
in this fashion by using the Visual Studio Class Designer, but no other dimension can be navigated this way. 
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with the .NET Just-in-time (JIT) compiler. An interesting framework to support this approach 
is Microsoft Phoenix. It is being developed by Microsoft and consists of a unified framework, 
offering extension and customization features for the .NET compilers and runtime. A solution 
with related, yet, less ambitious requirements, that uses Microsoft Phoenix, is discussed for 
the SetPoint Aspect Oriented Programming implementation [Altman06]. 

The test artefact is also embraced by the holistic MDSoC perspective. Multi-dimensional unit 
testing has already been identified, in Section 7.3, as a valuable field and poses interesting 
challenges for future research. As presented in Section 7.3, testing merged methods provides 
one such challenge. Further research into the composition of test concerns is required to 
address this challenge. Eventually, new composition features may be necessary for providing 
test concerns with the required mechanisms to test standard concern composition, such as 
merge. More insight into test-driven development and other testing approaches would also be 
valuable to strengthen the proposed MDSoC testing approach. 

Previous sections (7.2, 7.4 and 8.2) already focused situations when a concern needs to use 
functionality from a different concern. In these cases, it is desirable to avoid introducing a 
direct dependency between concerns. Future research could explore solutions like defining 
inter-concern interfaces or using adapters for each different concern that provides the same 
functionality. 

Another interesting field for future research deals with the crossing of boundaries between 
different hyperspaces. For instance, take one hyperspace defined inside a .NET project, or a 
set of projects, with its own dimensions and respective concerns. If it is used as a library from 
a second hyperspace, should it not offer its functionality according to the implemented 
dimensions and concerns? Eventually, the class library of the first hyperspace should 
automatically have a set of interfaces generated, one for each concern of its hyperspace. The 
second hyperspace could then use these interfaces to view the library functionality from the 
different concern perspectives. The same approach can be thought of in terms of automatic 
documentation organization. 

Partial types are a native language feature of .NET languages that we successfully explored in 
terms of MDSoC support. It would also be interesting to explore other existing features of 
software development environments and platforms that can be used for MDSoC. For instance, 
source control and change management mechanisms could be used together to support a 
features dimension. 

If an MDSoC hyperspace is defined in higher level artefacts, like analysis or design, then, its 
structure can be automatically generated for the code artefact. This kind of hyperspace 
traceability between definitions in the different artefacts is essential and should be 
straightforward to automate given that appropriate analysis and design tools exist. 

As IDEs tend to become the tool of choice for all stages in software development, enhancing 
Hyper/Net IDE integration is an important task for adequate MDSoC support across different 
artefacts. In fact, as the hyperspace structure is shared between the different artefacts, it 
should be implemented only once and be shared by the different artefacts of the same 
hyperspace. This can also be an interesting issue for IDE integration when using design and 
analysis tools integrated in the IDE. 
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10.4 Concluding remarks 

Software composition addresses relevant problems in Software Engineering. With the advent 
of subjects, SOP provided a generic modularization mechanism that could be used to 
overcome limitations with Object Oriented modularization. MDSoC introduced this 
modularization mechanism into a multi-dimensional structure and extended its context from 
programming to the entire software development lifecycle. This allowed direct traceability 
between the different artefacts in software development.  

Moreover, both SOP and MDSoC allow the introduction and removal of features without 
affecting the others. This promotes reuse and also provides support for combining different 
sets of features through mix-and-match. Mix-and-match can be used to support software 
product lines. 

We developed our own MDSoC implementations so we could use MDSoC in Microsoft 
.NET. Our .NET partial types approach can be used to implement MDSoC without any 
supporting software other than a .NET compiler. This comes at the cost of only being able to 
create very simple MDSoC hyperspaces, but, still, it offers an interesting MDSoC 
implementation that even supports mix-and-match. To also support the composition of 
methods, we extended this approach by implementing Hyper/Net. It uses .NET attributes to 
hold composition information. These attributes are applied directly to the methods, so, 
Hyper/Net does not separate composition information from the code itself.  

Hyper/Net was used to develop some case studies that simultaneously showed the benefits of 
MDSoC and served to validate our implementations. This validation was consolidated 
through tests on the functionality of the case studies, using a unit testing approach that we 
adapted for MDSoC. This validation was not only achieved through case studies but also by 
analyzing our implementations in the light of the MDSoC model and by comparing them with 
other MDSoC implementations.  

When compared with existing MDSoC implementations, Hyper/Net showed relevant 
limitations, but these can be addressed and overcome as part of future work. We were able to 
innovate, introducing the first native MDSoC implementation and by offering support for 
more than one programming language. Being able to use our MDSoC approaches inside IDEs 
also simplifies their adoption and leads way for the future support, in the same hyperspace, of 
the different artefacts that can be manipulated in the IDE. 
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Apendix I  

 

Hyper/Net source code 

This appendix lists the Hyper/Net source code organized according to the hyperspace 
presented in Section 8.2. The code is also documented in that same section. 

I.1 Hyper/Net Attribute Class Library 

I.1.1 Language Features – Bracket Concern 

namespace HyperNet 

{ 

  public delegate void BeforeMethod(MethodBase method, params object[] 

parameters); 

  public delegate object AfterMethod(MethodBase method, object returnValue, 

params object[] parameters); 

 

  /// <summary> 

  /// Defines the bracketing of a method 

  /// </summary> 

  [AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple 

= false)] 

  public class MethodBracket : System.Attribute 

  { 

    public readonly BeforeMethod beforeMethod; 

    public readonly AfterMethod afterMethod; 

    public readonly string beforeMethodByName; 

    public readonly string afterMethodByName; 

 

    /// <summary> 

    /// Creates a new method bracket Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    public MethodBracket(BeforeMethod beforeMethod, AfterMethod 

afterMethod) 

    { 

      this.beforeMethod = beforeMethod; 
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      this.afterMethod = afterMethod; 

    } 

 

    /// <summary> 

    /// Creates a new method bracket Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    public MethodBracket(string beforeMethod, string afterMethod) 

    { 

      this.beforeMethodByName = beforeMethod; 

      this.afterMethodByName = afterMethod; 

    } 

  } 

} 

I.1.2 Language Features – Merge Concern 

namespace HyperNet 

{ 

  /// <summary> 

  /// Distinguishes between different method merge actions 

  /// </summary> 

  public enum MethodMergeAction { Override, Merge }; 

 

  public delegate object MethodMergeResult (params object[] 

resultsToMerge); 

 

  /// <summary> 

  /// Defines the action used for merging methods 

  /// </summary> 

  [AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple 

= false)] 

  public class MethodMerge : System.Attribute 

  { 

    public readonly MethodMergeAction mergeAction; 

    public readonly int priority = -1; 

    public readonly MethodMergeResult mergeResult = null; 

    public readonly string mergeResultByName = null; 

 

    /// <summary> 

    /// Creates a new merge action Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    public MethodMerge(MethodMergeAction mergeAction) 

    { 

      this.mergeAction = mergeAction; 

    } 

     

    /// <summary> 

    /// Creates a new merge action Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    /// <param name="priority">Method priority relative to the merged 

methods</param> 

    public MethodMerge(MethodMergeAction mergeAction, int priority) 

    { 

      this.mergeAction = mergeAction; 

      this.priority = priority; 
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    } 

 

    /// <summary> 

    /// Creates a new merge action Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    /// <param name="priority">Method priority relative to the merged 

methods</param> 

    public MethodMerge(MethodMergeAction mergeAction, int priority, 

MethodMergeResult mergeResult) 

    { 

      this.mergeAction = mergeAction; 

      this.priority = priority; 

      this.mergeResult = mergeResult; 

    } 

    /// <summary> 

    /// Creates a new merge action Attribute 

    /// </summary> 

    /// <param name="mergeAction">Defines the action used for merging this 

method </param> 

    /// <param name="priority">Method priority relative to the merged 

methods</param> 

    public MethodMerge(MethodMergeAction mergeAction, int priority, string 

mergeResultByName) 

    { 

      this.mergeAction = mergeAction; 

      this.priority = priority; 

      this.mergeResultByName = mergeResultByName; 

    } 

  } 

 

} 

I.2 Hyper/Net Console Application 

I.2.1 Features – Flow Control 

namespace HyperNet 

{ 

  partial class MainClass 

  { 

    public static int Run(string code, 

                           SupportedLanguage sourceLang, 

                           SupportedLanguage outputLang, 

                           string outputFile) 

    { 

      // Multi-language support 

      SupportedLanguage parseLanguage = sourceLang; 

 

      SourceCode source = new SourceCode(code, parseLanguage); 

       

      // Move references to the beginning of the code string 

      source.FactorizeImports(); 

       

      // Parse the code 

      if(!source.Parse()) 
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      { 

        Console.Write("Error while parsing: " + source.ParseErrors); 

                 

                string errorFile = outputFile + ".error"; 

                Console.Write("  Saved Hyper/Net intermediate code to " + 

errorFile); 

                SaveToFile(errorFile, source.ToString()); 

         

                Console.ReadLine(); 

 

                return -1; 

      } 

      else 

      { 

        //Console.WriteLine("Parse OK."); 

         

        // Merge namespaces 

        source.MergeNamespaces(); 

         

        // Merge partial types 

        source.MergePartialTypes(); 

 

        // Merge methods 

        source.MergeMethods(); 

         

        // Apply bracketing 

        source.ApplyBracketing(); 

         

        // Get the output in the desired language 

        string programOutput = source.GetCode(outputLang); 

 

        // Save to file 

        SaveToFile(outputFile, programOutput); 

 

        //Console.WriteLine(programOutput); 

 

                return 0; 

      } 

    } 

 

    public static int Main(string[] args) 

    { 

      if(args.Length != 3) 

      { 

                foreach (string arg in args) 

                    Console.WriteLine(arg); 

 

                Console.WriteLine("usage: HyperNet <input project base 

directory>\r\n" 

                          +"\t<input project file> <output file 

name>\r\n\r\n" 

                          +@"Example HyperNet.exe 

d:\projects\HousePlantEditor\"+"\r\n\t" 

                          +@"HousePlant.csproj 

d:\projects\HousePlantEditor\Output\HousePlant.cs"); 

        return -2; 

      } 

 

            int ret; 

       

      // TODO: The main try catch approach is only good for a prototype 

      try 

      { 

        // Will contain the merge of the source code 
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                string projectBaseDir = args[0] + "\\"; 

                string projectFile = args[1]; 

                string targetFile = args[2]; 

 

                string merged_source_code = 

LoadMergedSourceCode(projectBaseDir, projectFile, targetFile); 

 

                ret = Run(merged_source_code, 

                    SupportedLanguage.CSharp, 

                    SupportedLanguage.CSharp, 

                    targetFile); 

      } 

      catch(Exception ex) 

      { 

        Console.WriteLine("Error: " + ex.Message); 

        //Console.WriteLine(ex.StackTrace); 

        Console.ReadLine(); 

 

                ret = -1; 

      } 

 

            return ret; 

    } 

    } 

} 

I.2.2 Features – Input 

using ICSharpCode.SharpDevelop.Project; 

 

namespace HyperNet 

{ 

  partial class MainClass 

  { 

        private static string LoadMergedSourceCode(string projectBaseDir, 

string projectFile, string targetFile) 

        { 

            // Will contain the merge of the source code 

            string merged_source_code = ""; 

 

            // Get all source files from the project file 

            FileStream projFile = File.Open(projectBaseDir + projectFile, 

FileMode.Open); 

 

            /* Not used: XmlDocument approach for Project file editing: 

            XmlDocument doc = new XmlDocument(); 

            doc.Load(projFile); 

 

            XmlNodeList compiles = doc.GetElementsByTagName("Compile"); 

 

            foreach (XmlNode compile in compiles) 

            { 

                // Read the source file content 

                FileStream sourceFile = 

                     File.Open(projectBaseDir + 

compile.Attributes["Include"].InnerText, FileMode.Open); 

                StreamReader sr = new StreamReader(sourceFile); 

                merged_source_code += sr.ReadToEnd(); 

                sr.Close(); 

                sourceFile.Close(); 

            } 
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            NameXmlElements(doc, compiles, "EmbeddedResource_Temp"); 

            XmlNodeList embeddeds = 

doc.GetElementsByTagName("EmbeddedResource"); 

            NameXmlElements(doc, embeddeds, "Compile"); 

            XmlNodeList compiles_temp = 

doc.GetElementsByTagName("EmbeddedResource_Temp"); 

            NameXmlElements(doc, compiles_temp, "EmbeddedResource"); 

 

            projFile.Seek(0, SeekOrigin.Begin); 

            doc.Save(projFile); 

            //doc.Save(File.Create(projectBaseDir + projectFile + 

".hn.csproj")); 

             */ 

 

            XmlReader projReader = XmlReader.Create(projFile); 

            while (projReader.Read()) 

            { 

                if (projReader.NodeType == XmlNodeType.Element 

                   && projReader.Name.Equals("EmbeddedResource")) 

                { 

                    FileStream sourceFile = 

                        File.Open(projectBaseDir + 

projReader.GetAttribute("Include"), FileMode.Open); 

                    StreamReader sr = new StreamReader(sourceFile); 

                    merged_source_code += sr.ReadToEnd(); 

                    sr.Close(); 

                    sourceFile.Close(); 

                } 

            } 

            projReader.Close(); 

 

            projFile.Close(); 

 

            // Save a copy of the merged source code (for debug purposes) 

            SaveToFile(targetFile + ".original", merged_source_code); 

 

            return merged_source_code; 

        } 

 

        /* 

        private static void NameXmlElements(XmlDocument doc, XmlNodeList 

nodes, string newName) 

        { 

            for (int i = nodes.Count - 1; i >= 0; i--) 

            { 

                XmlNode node = nodes[i]; 

 

                // Replace the element tag 

                XmlElement compToEmbedded = doc.CreateElement(newName, 

node.NamespaceURI); 

                foreach (XmlAttribute att in node.Attributes) 

                    

compToEmbedded.Attributes.Append((XmlAttribute)att.Clone()); 

                foreach (XmlNode child in node.ChildNodes) 

                { 

                    XmlElement childElem = doc.CreateElement(child.Name, 

child.NamespaceURI); 

                    childElem.InnerText = child.InnerText; 

                    compToEmbedded.PrependChild(childElem); 

                } 

                node.ParentNode.ReplaceChild(compToEmbedded, node); 

            } 

        } 
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         */ 

  } 

} 

I.2.3 Features – Kernel 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    string sourceCode; 

    public readonly SupportedLanguage Language; 

 

    /* Overriden in Feature.Output 

    public string Code 

    { 

      get { return sourceCode; } 

    } 

    */ 

 

    public SourceCode(string sourceCode, SupportedLanguage language) 

    { 

      this.sourceCode = sourceCode; 

      this.Language = language; 

    } 

 

        public override string ToString() 

        { 

            return this.sourceCode; 

        } 

  } 

} 

I.2.4 Features – Output 

namespace HyperNet 

{ 

  partial class MainClass 

  { 

    private static void SaveToFile(string fName, string code) 

    { 

      if(fName != null) 

      { 

        FileStream outFile = File.Open(fName, FileMode.Create); 

        StreamWriter outSw = new StreamWriter(outFile); 

        outSw.Write(code); 

        outSw.Close(); 

        outFile.Close(); 

      } 

    } 

  } 

} 

 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    public string Code 
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    { 

      get 

      { 

        if(this.parser != null) 

          return GetCode(this.Language); 

        else 

          return sourceCode; 

      } 

    } 

  } 

} 

I.2.5 Features – Parse Preparations 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    public void FactorizeImports() 

    { 

      Hashtable referenceHT = new Hashtable(); 

       

      string searchStr = "using "; 

      string delimiter = ";"; 

 

      if(this.Language == SupportedLanguage.VBNet) 

      { 

        searchStr = "Imports "; 

        delimiter = "\n"; 

      } 

       

      int refIndex, lastFound = 0; 

            while ((refIndex = this.sourceCode.IndexOf(searchStr, 

lastFound)) != -1) 

            { 

                int endRefIndex = this.sourceCode.IndexOf(delimiter, 

refIndex + searchStr.Length); 

                if (endRefIndex - refIndex + 1 > 0) 

                { 

                    string reference = this.sourceCode.Substring(refIndex, 

endRefIndex - refIndex + 1); 

                    //reference.Replace(" ", ""); 

 

                    this.sourceCode = this.sourceCode.Substring(0, 

Math.Max(refIndex - 1, 0)) 

                        + this.sourceCode.Substring(endRefIndex + 1); 

 

                    if (!referenceHT.Contains(reference)) 

                        referenceHT.Add(reference, reference); 

                } 

                else 

                    lastFound = refIndex + 1; 

            } 

       

      string allDistinctReferences = ""; 

       

      foreach(string reference in referenceHT.Keys) 

      { 

        allDistinctReferences += reference; 

      } 
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      this.sourceCode = allDistinctReferences + this.sourceCode; 

    } 

  } 

} 

I.2.6 Features – Parsing 

using ICSharpCode.NRefactory.Parser; 

using ICSharpCode.NRefactory.Parser.AST; 

using ICSharpCode.NRefactory.PrettyPrinter; 

 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    IParser parser = null; 

     

    public string ParseErrors 

    { 

      get 

      { 

        if(parser != null) 

          return parser.Errors.ErrorOutput; 

        else 

          return null; 

      } 

    } 

 

    public bool Parse() 

    { 

      StringReader sr = new StringReader(this.Code); 

      parser = ParserFactory.CreateParser(this.Language, sr); 

      parser.Parse(); 

       

      if(parser.Errors.count > 0) 

        return false; 

      else 

        return true; 

    } 

 

        public string GetCode(SupportedLanguage outputLanguage) 

        { 

            if (parser == null) 

            { 

                throw new Exception("Parser not initialized, no code can be 

generated."); 

            } 

            else 

            { 

                IOutputASTVisitor outputVis; 

                if (outputLanguage == SupportedLanguage.CSharp) 

                    outputVis = new CSharpOutputVisitor(); 

                else 

                    outputVis = new VBNetOutputVisitor(); 

 

                this.parser.CompilationUnit.AcceptVisitor(outputVis, null); 

                return outputVis.Text; 

            } 

        } 

    } 

} 
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I.2.7 Features – Namespace Composition 

using ICSharpCode.NRefactory.Parser; 

using ICSharpCode.NRefactory.Parser.AST; 

 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    /// <summary> 

    /// Merge all repeated namespaces ocurring in the parse tree 

    /// </summary> 

    public void MergeNamespaces() 

    { 

      Hashtable nsHT = new Hashtable(); 

      List<NamespaceDeclaration> remNSList = new 

List<NamespaceDeclaration>(); 

       

      foreach(INode inode in this.parser.CompilationUnit.Children) 

      { 

        if(inode is NamespaceDeclaration) 

        { 

          NamespaceDeclaration ns = (NamespaceDeclaration)inode; 

          if(!nsHT.Contains(ns.Name)) 

          { 

            nsHT.Add(ns.Name, ns); 

          } 

          else 

          { 

            NamespaceDeclaration mainNS = 

(NamespaceDeclaration)nsHT[ns.Name]; 

            foreach(INode node in ns.Children) 

            { 

              mainNS.AddChild(node); 

            } 

 

            remNSList.Add(ns); 

          } 

        } 

      } 

       

      foreach(NamespaceDeclaration ns in remNSList) 

      { 

        this.parser.CompilationUnit.Children.Remove(ns); 

      } 

    } 

  } 

} 

I.2.8 Features – Partial Type Composition 

using ICSharpCode.NRefactory.Parser; 

using ICSharpCode.NRefactory.Parser.AST; 

 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

        private List<AttributeSection> 

MergeAttributeSections(List<AttributeSection> ass1, List<AttributeSection> 

ass2) 
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        { 

            List<AttributeSection> ret = new List<AttributeSection>(); 

 

            foreach (AttributeSection as1 in ass1) 

            { 

                AttributeSection asNew = new 

AttributeSection(as1.AttributeTarget, new 

List<ICSharpCode.NRefactory.Parser.AST.Attribute>()); 

 

                foreach (ICSharpCode.NRefactory.Parser.AST.Attribute at1 in 

as1.Attributes) 

                { 

                    bool alreadyPresent = false; 

                    foreach (AttributeSection as2 in ass2) 

                    { 

                        foreach 

(ICSharpCode.NRefactory.Parser.AST.Attribute at2 in as2.Attributes) 

                        { 

                            if (at2.Name == at1.Name) 

                                alreadyPresent = true; 

                        } 

                    } 

                    if(!alreadyPresent) 

                        asNew.Attributes.Add(at1); 

                } 

 

                if (asNew.Attributes.Count > 0) 

                    ret.Add(asNew); 

            } 

 

            foreach (AttributeSection as2 in ass2) 

            { 

                ret.Add(as2); 

            } 

 

            return ret; 

        } 

 

    public void MergePartialTypes() 

    { 

      foreach(INode inode in parser.CompilationUnit.Children) 

      { 

        if(inode is NamespaceDeclaration) 

        { 

                    Hashtable ptHT = new Hashtable(); 

                    List<TypeDeclaration> remPTList = new 

List<TypeDeclaration>(); 

 

                    foreach (INode nsNode in inode.Children) 

          { 

            if(nsNode is TypeDeclaration) 

            { 

              TypeDeclaration td = (TypeDeclaration)nsNode; 

               

              if(td.Modifier.CompareTo(Modifier.Partial) >= 0) 

              { 

                if(!ptHT.Contains(td.Name)) 

                { 

                  ptHT.Add(td.Name, td); 

                  td.Modifier -= Modifier.Partial; 

                } 

                else 

                { 

                  TypeDeclaration mainTD = (TypeDeclaration)ptHT[td.Name]; 
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                  foreach(INode node in td.Children) 

                  { 

                    mainTD.AddChild(node); 

                  } 

                   

                  foreach(TypeReference tr in td.BaseTypes) 

                  { 

                    bool referenceExists = false; 

                    foreach(TypeReference existingTr in mainTD.BaseTypes) 

                    { 

                      if(existingTr.SystemType.Equals(tr.SystemType)) 

                      { 

                        referenceExists = true; 

                        break; 

                      } 

                    } 

                    if(!referenceExists) 

                      mainTD.BaseTypes.Add(tr); 

                  } 

                 

                                    // Copy attributes 

                                    mainTD.Attributes = 

this.MergeAttributeSections(td.Attributes, mainTD.Attributes); 

                   

                  td.Modifier -= Modifier.Partial; 

                  mainTD.Modifier |= td.Modifier; 

                   

                  remPTList.Add(td); 

                } 

              } 

            } 

          } 

 

          foreach(TypeDeclaration td in remPTList) 

          { 

            inode.Children.Remove(td); 

          } 

        } 

      } 

    } 

  } 

} 

I.2.9 Language Features – Bracket Concern 

using ICSharpCode.NRefactory.Parser; 

using ICSharpCode.NRefactory.Parser.AST; 

 

namespace HyperNet 

{ 

  public partial class SourceCode 

  { 

    public void InsertInMethodBody(MethodDeclaration method, int pos, INode 

node) 

    { 

      if(pos >= method.Body.Children.Count) 

        method.Body.AddChild(node); 

      else 

      { 

        List<INode> list = new List<INode>(); 
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        int numElemsBody = method.Body.Children.Count; 

 

        for(int i = numElemsBody - 1; i >= pos; i--) 

        { 

          list.Add(method.Body.Children[i]); 

          method.Body.Children.RemoveAt(i); 

        } 

         

        method.Body.AddChild(node); 

 

        for(int i = list.Count - 1; i >= 0; i--) 

        { 

          method.Body.AddChild(list[i]); 

          list.RemoveAt(i); 

        } 

      } 

    } 

     

     

    /// <summary> 

    /// Applies bracketing 

    /// </summary> 

    public void ApplyBracketing() 

    { 

      foreach(INode inode in parser.CompilationUnit.Children) 

      { 

        if(inode is NamespaceDeclaration) 

        { 

          foreach(INode nsNode in inode.Children) 

          { 

            if(nsNode is TypeDeclaration) 

            { 

              TypeDeclaration td = (TypeDeclaration)nsNode; 

               

              foreach(INode classNode in td.Children) 

              { 

                if(classNode is MethodDeclaration) 

                { 

                  MethodDeclaration method = (MethodDeclaration)classNode; 

                   

                  // Get the method bracketing attributes (if any) 

                  MethodBracket bracketAtt = 

                    (MethodBracket)GetAttribute(method, 

typeof(MethodBracket)); 

                   

                  // Remove the attribute 

                  this.RemoveAttribute(method, typeof(MethodBracket)); 

                   

                  if(bracketAtt != null) 

                  { 

                    string baseMethodInfoID = "_method_BasicInfo"; 

                    if(bracketAtt.beforeMethodByName != null 

                       || bracketAtt.afterMethodByName != null) 

                    { 

                      FieldReferenceExpression getCurrentMethod = 

                        new FieldReferenceExpression( 

                                                     new 

FieldReferenceExpression( 

                                                                                  

new FieldReferenceExpression( 

                                                                                                               

new IdentifierExpression( 

                                                                                                                                        

"System"), "Reflection"), "MethodBase"), "GetCurrentMethod"); 
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                      InvocationExpression getCurrentMethod_Invocation = 

                        new InvocationExpression(getCurrentMethod, null); 

                      VariableDeclaration varDeclaration = 

                        new VariableDeclaration(baseMethodInfoID, 

                                                

getCurrentMethod_Invocation, 

                                                new 

TypeReference("System.Reflection.MethodBase")); 

 

                      InsertInMethodBody(method, 0, new 

LocalVariableDeclaration(varDeclaration)); 

                    } 

                     

                    if(bracketAtt.beforeMethodByName != null) 

                    { 

                      FieldReferenceExpression methodName = 

                        new FieldReferenceExpression(new 

ThisReferenceExpression(), 

                                                     

bracketAtt.beforeMethodByName); 

                      InvocationExpression ie = new 

InvocationExpression(methodName, null); 

 

                      ie.Arguments.Add(new 

IdentifierExpression(baseMethodInfoID)); 

                      foreach (ParameterDeclarationExpression param in 

method.Parameters) 

                      { 

                        Expression expr = new 

IdentifierExpression(param.ParameterName); 

                        ie.Arguments.Add(expr); 

                      } 

 

                      InsertInMethodBody(method, 1, new 

StatementExpression(ie)); 

                    } 

                     

                    if(bracketAtt.afterMethodByName != null) 

                    { 

                      int num_return_stmt = 0; 

                      foreach(INode metNode in method.Body.Children) 

                      { 

                        if(metNode is ReturnStatement) 

                        { 

                          num_return_stmt++; 

                          ReturnStatement returnStmt = 

(ReturnStatement)metNode; 

                           

                          Expression retVal = returnStmt.Expression; 

                          FieldReferenceExpression methodName = 

                            new FieldReferenceExpression(new 

ThisReferenceExpression(), 

                                                         

bracketAtt.afterMethodByName); 

                          InvocationExpression ie = new 

InvocationExpression(methodName, null); 

 

                          ie.Arguments.Add(new 

IdentifierExpression(baseMethodInfoID)); 

                          ie.Arguments.Add(retVal); 

                          foreach (ParameterDeclarationExpression param in 

method.Parameters) 

                          { 
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                            Expression expr = new 

IdentifierExpression(param.ParameterName); 

                            ie.Arguments.Add(expr); 

                          } 

                           

                          returnStmt.Expression = new 

CastExpression(method.TypeReference, ie, CastType.Cast); 

                        } 

                      } 

 

                      if(num_return_stmt == 0) 

                      { 

                        FieldReferenceExpression methodName = 

                          new FieldReferenceExpression(new 

ThisReferenceExpression(), 

                                                       

bracketAtt.afterMethodByName); 

                        InvocationExpression ie = new 

InvocationExpression(methodName, null); 

 

                        ie.Arguments.Add(new 

IdentifierExpression(baseMethodInfoID)); 

                        ie.Arguments.Add(new PrimitiveExpression(null, 

"null")); 

                        foreach (ParameterDeclarationExpression param in 

method.Parameters) 

                        { 

                          Expression expr = new 

IdentifierExpression(param.ParameterName); 

                          ie.Arguments.Add(expr); 

                        } 

                         

                        method.Body.AddChild(new StatementExpression(ie)); 

                      } 

                    } 

                  } 

                } 

              } 

            } 

          } 

        } 

      } 

    } 

  } 

} 

I.2.10 Language Features – Merge Concern 

using ICSharpCode.NRefactory.Parser; 

using ICSharpCode.NRefactory.Parser.AST; 

 

namespace HyperNet 

{ 

  /* 

  public class Invocation : IComparable 

  { 

    public readonly int Priority; 

    public readonly VariableDeclaration Variable; 

 

    public Invocation(int priority, VariableDeclaration variable) 

    { 
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      this.Priority = priority; 

      this.Variable = variable; 

    } 

     

    public int CompareTo(object inv2) 

    { 

      if(inv2 is Invocation) 

        return this.Priority.CompareTo(((Invocation)inv2).Priority); 

      else 

        return -1; 

    } 

  } 

   */ 

 

  public partial class SourceCode 

  { 

        private string GetAssemblyQualifiedName(string typeName, Type 

assemblyType) 

        { 

            return typeName + "," + assemblyType.Assembly.FullName; 

        } 

 

    private InvocationExpression CreateMethodCall(MethodDeclaration method) 

    { 

      FieldReferenceExpression methodName = new 

FieldReferenceExpression(new ThisReferenceExpression(), 

                                                                         

method.Name); 

      InvocationExpression ie = new InvocationExpression(methodName, null); 

      foreach (ParameterDeclarationExpression param in method.Parameters) 

      { 

        Expression expr = new IdentifierExpression(param.ParameterName); 

        if (param.ParamModifier == ParamModifier.Ref) 

        { 

          expr = new DirectionExpression(FieldDirection.Ref, expr); 

        } 

        ie.Arguments.Add(expr); 

      } 

      return ie; 

    } 

     

    private bool EqualMethodSignatures(MethodDeclaration method1, 

MethodDeclaration method2) 

    { 

      

if(!method1.TypeReference.SystemType.Equals(method2.TypeReference.SystemTyp

e)) 

        return false; 

       

      if(method1.Parameters.Count != method2.Parameters.Count) 

        return false; 

       

      for(int i = 0; i < method1.Parameters.Count; i++) 

      { 

        

if(!method1.Parameters[i].TypeReference.SystemType.Equals(method2.Parameter

s[i].TypeReference.SystemType)) 

          return false; 

      } 

       

      return true; 

    } 

 

    /// <summary> 
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    /// Returns the first attribute found with the specified type 

    /// </summary> 

    /// <param name="method">Method declaration to be searched</param> 

    /// <returns></returns> 

    private object GetAttribute(MethodDeclaration method, Type 

requiredAttributeType) 

    { 

      foreach(AttributeSection aSec in method.Attributes) 

      { 

        foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in 

aSec.Attributes) 

        { 

                    // Hyper/Net attributes belong to a different Assembly. 

Need to search for these types there. 

                    string attAssemblyQualifiedName = 

GetAssemblyQualifiedName(att.Name, typeof(MethodMerge)); 

 

                    Type attType = Type.GetType(attAssemblyQualifiedName); 

                    if (attType != null && 

attType.Equals(requiredAttributeType)) 

          { 

            ArrayList list = new ArrayList(); 

            foreach(Expression arg in att.PositionalArguments) 

            { 

              if(arg is FieldReferenceExpression) 

              { 

                FieldReferenceExpression fre = 

(FieldReferenceExpression)arg; 

 

                string argType; 

                string argValue; 

                if(fre.TargetObject is IdentifierExpression) 

                { 

                  argType = 

((IdentifierExpression)fre.TargetObject).Identifier; 

                  argValue = fre.FieldName; 

                } 

                else if(fre.TargetObject is FieldReferenceExpression) 

                { 

                  Expression targetExp = fre.TargetObject; 

                  argType = ""; 

                  argValue = fre.FieldName; 

                  while(targetExp is FieldReferenceExpression) 

                  { 

                    FieldReferenceExpression internalFre = 

(FieldReferenceExpression)targetExp; 

                     

                    argType = internalFre.FieldName + 

                      (argType.Equals(String.Empty) ? "" : "." + argType); 

                     

                    targetExp = internalFre.TargetObject; 

                  } 

                   

                  if(targetExp is IdentifierExpression) 

                    argType = ((IdentifierExpression)targetExp).Identifier 

+ "." + argType; 

                  else 

                    throw new Exception("Internal error while getting 

attribute hierarchy."); 

                } 

                else 

                { 

                  throw new Exception("Error in attribute "+attType+" 

definition with "+fre+"."); 
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                } 

 

                                // Hyper/Net attributes belong to a 

different Assembly. Need to search for these types there. 

                                string argAssemblyQualifiedName = 

GetAssemblyQualifiedName(argType, typeof(MethodMergeAction)); 

                                Type argRealType = 

Type.GetType(argAssemblyQualifiedName); 

                if(argRealType == null) 

                  throw new Exception("Cannot find the Type '"+argType+"' 

of a parameter for "+requiredAttributeType); 

 

                if(argRealType.IsEnum) 

                { 

                  list.Add(Enum.Parse(argRealType, argValue)); 

                } 

                else 

                { 

                  Console.WriteLine(argValue); 

                  Console.WriteLine(argRealType); 

                   

                  string[] parameters = { argValue }; 

                  Type[] parameterTypes = { argValue.GetType() }; 

                   

                  MethodInfo parseMethod = argRealType.GetMethod("Parse", 

parameterTypes); 

                  list.Add(parseMethod.Invoke(null, parameters)); 

                } 

              } 

              else if(arg is PrimitiveExpression) 

              { 

                PrimitiveExpression prim = (PrimitiveExpression)arg; 

                 

                list.Add(prim.Value); 

              } 

              else if(arg is UnaryOperatorExpression 

                      && ((UnaryOperatorExpression)arg).Expression is 

PrimitiveExpression) 

              { 

                UnaryOperatorExpression opExp = 

(UnaryOperatorExpression)arg; 

                PrimitiveExpression prim = 

(PrimitiveExpression)opExp.Expression; 

                 

                // TODO: Change the method of processing operator types 

                if(opExp.Op == UnaryOperatorType.Minus 

                   && prim.Value.GetType().Equals(typeof(int))) 

                  list.Add(- (int)prim.Value); 

                else if(opExp.Op == UnaryOperatorType.Not 

                        && prim.Value.GetType().Equals(typeof(bool))) 

                  list.Add(! (bool)prim.Value); 

                else 

                  list.Add(prim.Value); 

              } 

              // this is a literal, the attribute should provide a 

constructor with a string instead 

              else if(arg is IdentifierExpression) 

              { 

                IdentifierExpression ie  = (IdentifierExpression)arg; 

                list.Add(ie.Identifier); 

              } 

              else 

              { 
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                Console.WriteLine("Unexpected attributte argument: " + arg 

+ "."); 

              } 

            } 

             

            return Activator.CreateInstance(requiredAttributeType, 

list.ToArray()); 

          } 

        } 

      } 

       

      return null; 

    } 

 

    /// <summary> 

    /// Remove all attributes found with the specified type 

    /// </summary> 

    /// <param name="method">Method declaration to be searched</param> 

    private void RemoveAttribute(MethodDeclaration method, Type 

requiredAttributeType) 

    { 

      List<AttributeSection> remASecList = 

        new List<AttributeSection>(); 

      foreach(AttributeSection aSec in method.Attributes) 

      { 

        List<ICSharpCode.NRefactory.Parser.AST.Attribute> remAttList = 

          new List<ICSharpCode.NRefactory.Parser.AST.Attribute>(); 

        foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in 

aSec.Attributes) 

        { 

                    // Hyper/Net attributes belong to a different Assembly. 

Need to search for these types there. 

                    string assemblyQualifiedName = att.Name + "," + 

typeof(MethodMerge).Assembly.FullName; 

                    Type attType = Type.GetType(assemblyQualifiedName); 

          if(attType != null && attType.Equals(requiredAttributeType)) 

          { 

            remAttList.Add(att); 

          } 

        } 

         

        foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in 

remAttList) 

          aSec.Attributes.Remove(att); 

 

        remAttList.Clear(); 

         

        if(aSec.Attributes.Count == 0) 

          remASecList.Add(aSec); 

      } 

       

      foreach(AttributeSection aSec in remASecList) 

        method.Attributes.Remove(aSec); 

    } 

 

    /// <summary> 

    /// Merges methods 

    /// </summary> 

    public void MergeMethods() 

    { 

      foreach(INode inode in parser.CompilationUnit.Children) 

      { 

        if(inode is NamespaceDeclaration) 

        { 
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          foreach(INode nsNode in inode.Children) 

          { 

            if(nsNode is TypeDeclaration) 

            { 

              Hashtable metHT = new Hashtable(); 

              List<MethodDeclaration> remMetList = new 

List<MethodDeclaration>(); 

              List<MethodDeclaration> addMetList = new 

List<MethodDeclaration>(); 

               

              TypeDeclaration td = (TypeDeclaration)nsNode; 

               

              foreach(INode classNode in td.Children) 

              { 

                if(classNode is MethodDeclaration) 

                { 

                  MethodDeclaration method = (MethodDeclaration)classNode; 

                   

                  bool hasOverride = false; 

                  bool hasMerge = false; 

                  string originalMethodName = method.Name; 

 

                   

                  // Step 1: Search for methods with the same name, at the 

same level 

                  //         and determine the action for Step 2 

                  int conflictNum = 0; 

                  foreach(INode neighbourClassNode in td.Children) 

                  { 

                    if(neighbourClassNode is MethodDeclaration 

                       && (neighbourClassNode == classNode 

                           || 

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName) 

                               && 

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method)))) 

                    { 

                      MethodDeclaration neighbourMethod = 

                        ((MethodDeclaration)neighbourClassNode); 

                      conflictNum++; 

 

                      // Get the method merge attributes (if any) 

                      MethodMerge mergeAtt = 

                        (MethodMerge)GetAttribute(neighbourMethod, 

typeof(MethodMerge)); 

                       

                      if(mergeAtt != null) 

                      { 

                        if(mergeAtt.mergeAction == MethodMergeAction.Merge) 

                          hasMerge = true; 

                        else if(mergeAtt.mergeAction == 

MethodMergeAction.Override) 

                        { 

                          if(hasOverride) 

                            throw new Exception( 

                                                "More than one Override 

merge action defined for method " 

                                                + method.Name); 

                          hasOverride = true; 

                        } 

                      } 

                    } 

                  } 

                   

                  if(hasOverride && hasMerge) 
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                    throw new Exception("Method " + method.Name + " has 

both overrides and merges defined."); 

                  else if(conflictNum == 1 && hasMerge) 

                  { 

                    RemoveAttribute(method, typeof(MethodMerge)); 

                  } 

                  else if(hasOverride) 

                  { 

                    // Step 2: Remove all methods but the Override one 

                    foreach(INode neighbourClassNode in td.Children) 

                    { 

                      if(neighbourClassNode is MethodDeclaration 

                         && (neighbourClassNode == classNode 

                             || 

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName) 

                                 && 

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method)))) 

                      { 

                        MethodDeclaration neighbourMethod = 

                          ((MethodDeclaration)neighbourClassNode); 

 

                        // Get the method merge attributes (if any) 

                        MethodMerge mergeAtt = 

                          (MethodMerge)GetAttribute(neighbourMethod, 

typeof(MethodMerge)); 

                         

                        if(mergeAtt == null || mergeAtt.mergeAction != 

MethodMergeAction.Override) 

                        { 

                          if(!remMetList.Contains(neighbourMethod)) 

                            remMetList.Add(neighbourMethod); 

                        } 

                        else 

                        { 

                          //RemoveAttribute(neighbourMethod, 

typeof(MethodMerge)); 

                        } 

                      } 

                    } 

                  } 

                  else if(conflictNum > 1 && hasMerge) 

                  { 

                    conflictNum = 0; 

                     

                    // A new method must be created, merging each of the 

existing methods 

                    MethodDeclaration md = new 

MethodDeclaration(originalMethodName, 

                                                                 

method.Modifier, 

                                                                 

method.TypeReference, 

                                                                 

method.Parameters, 

                                                                 null); 

                    md.Body = new BlockStatement(); 

                     

                    string resultMethodName = null; 

                     

                    System.Collections.Generic.SortedList<int, 

VariableDeclaration> varsList 

                      = new System.Collections.Generic.SortedList<int, 

VariableDeclaration>(); 
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                    System.Collections.Generic.SortedList<int, INode> 

invokeList 

                      = new System.Collections.Generic.SortedList<int, 

INode>(); 

                     

                    // Step 2: Rename each method and make them be invoked 

by a new method 

                    foreach(INode neighbourClassNode in td.Children) 

                    { 

                      if(neighbourClassNode is MethodDeclaration 

                         && (neighbourClassNode == classNode 

                             || 

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName) 

                                 && 

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method)))) 

                      { 

                        MethodDeclaration neighbourMethod = 

                          ((MethodDeclaration)neighbourClassNode); 

                        conflictNum++; 

 

                        // Rename merged method 

                        neighbourMethod.Name = neighbourMethod.Name + "_" + 

conflictNum; 

                         

                        // Change modifier 

                        neighbourMethod.Modifier = Modifier.Private; 

                         

                        // Invoke each partial method 

                        InvocationExpression call = 

CreateMethodCall(neighbourMethod); 

 

                        // Get the method merge attributes (if any) 

                        MethodMerge mergeAtt = 

                          (MethodMerge)GetAttribute(neighbourMethod, 

typeof(MethodMerge)); 

                        int priority = -2; 

                        if(mergeAtt != null) 

                        { 

                          priority = mergeAtt.priority; 

                          if(mergeAtt.mergeResultByName != null) 

                            resultMethodName = mergeAtt.mergeResultByName; 

                        } 

 

                        // Compose the invocation with return value keeping 

                        INode invokeDecl; 

                        if(!method.TypeReference.ToString().Equals("void")) 

                        { 

                          // Declare variable to hold each partial result 

                          VariableDeclaration varDeclaration = 

                            new VariableDeclaration("res_"+conflictNum, 

                                                    call, 

                                                    method.TypeReference); 

                          // Add the variable to the list for returning 

calculation 

                          try 

                          { 

                            varsList.Add(-priority, varDeclaration); 

                          } 

                          catch(Exception) 

                          { 

                            throw new Exception("MethodMerge: Adding 

repeated priority entries."); 

                          } 
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                          invokeDecl = new 

LocalVariableDeclaration(varDeclaration); 

                        } 

                        else 

                        { 

                          invokeDecl = new StatementExpression(call); 

                        } 

                         

                        // Add the invocation to the list for final order 

addition to the body 

                        invokeList.Add(-priority, invokeDecl); 

                         

                        // Remove HyperNet's own attributes 

                        RemoveAttribute(neighbourMethod, 

typeof(MethodMerge)); 

                         

                        // Copy existing attributes to the new method 

                        foreach(AttributeSection asec in 

neighbourMethod.Attributes) 

                        { 

                          

foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att 

                                  in asec.Attributes) 

                          { 

                            bool containsAtt = false; 

                            foreach(AttributeSection mdASec in 

md.Attributes) 

                            { 

                              

foreach(ICSharpCode.NRefactory.Parser.AST.Attribute mdAtt 

                                      in asec.Attributes) 

                              { 

                                // TODO: Obviously this check must ensure 

mutch more, 

                                //       the attribute itself should be 

comparable 

                                if(mdAtt.Children.Count == 

att.Children.Count 

                                   && mdAtt.Name.Equals(att.Name) 

                                  ) 

                                { 

                                  containsAtt = true; 

                                  break; 

                                } 

                              } 

                            } 

                            if(!containsAtt) 

                            { 

                              if(md.Attributes.Count < 1) 

                                md.Attributes.Add(new AttributeSection("", 

                                                                       new 

List<ICSharpCode.NRefactory.Parser.AST.Attribute>())); 

                              md.Attributes[0].Attributes.Add(att); 

                            } 

                          } 

                        } 

                         

                        // Remove all attributes from the merged method 

                        neighbourMethod.Attributes.Clear(); 

                      } 

                    } 

                     

                    // Add method invocation in order 

                    foreach(INode var in invokeList.Values) 
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                    { 

                      md.Body.AddChild(var); 

                    } 

                     

                    if(resultMethodName == null) 

                    { 

                      //ReturnStatement rs = new ReturnStatement(I 

                    } 

                    else 

                    { 

                      // Add the return calculation method 

                      FieldReferenceExpression methodName = 

                        new FieldReferenceExpression(new 

ThisReferenceExpression(), 

                                                     resultMethodName); 

                      InvocationExpression ie = 

                        new InvocationExpression(methodName, null); 

                      foreach(VariableDeclaration var in varsList.Values) 

                      { 

                        Expression expr = new 

IdentifierExpression(var.Name); 

                        ie.Arguments.Add(expr); 

                      } 

                       

                      CastExpression ce = new 

CastExpression(method.TypeReference, ie, CastType.Cast); 

                       

                      ReturnStatement rs = new ReturnStatement(ce); 

                      md.Body.AddChild(rs); 

                    } 

                     

                    // Add the new method for latter adding to the class 

                    addMetList.Add(md); 

                  } 

                  else if(conflictNum > 1) 

                  { 

                    throw new Exception("Method "+method.Name+" requires at 

least one MergeMethod definition (Merge or Override)."); 

                  } 

                } 

              } 

 

              foreach(MethodDeclaration md in remMetList) 

              { 

                nsNode.Children.Remove(md); 

              } 

 

              foreach(MethodDeclaration md in addMetList) 

              { 

                nsNode.Children.Add(md); 

              } 

               

              // HyperNet attributes clean-up: 

                            // TODO: This shouldn't be necessary here... 

              foreach(INode neighbourClassNode in td.Children) 

              { 

                if(neighbourClassNode is MethodDeclaration) 

                { 

                  MethodDeclaration method = 

                    ((MethodDeclaration)neighbourClassNode); 

                   

                  RemoveAttribute(method, typeof(MethodMerge)); 

                } 

              } 
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            } 

          } 

        } 

      } 

    } 

  } 

} 

 


