

UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Informática

Hyper/Net: MDSoC support for .NET

Por

Tiago Delgado Dias

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade

Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática.

Orientador: Professora Ana Moreira

Lisboa

(2007)

1

Agradecimentos

Gostaria de agradecer a quatro pessoas sem as quais não existiria esta dissertação:

� Ao Jorge Lopes, por acreditar em mim, por me ter motivado para o mestrado e por ter
criado as condições laborais que mo permitiram realizar durante dois anos que também
foram de trabalho intenso na Brisa.

� Aos meus pais, Gabriela Delgado e José Dias, pelo apoio constante e incondicional.

� À Professora Ana Moreira, pelos aconselhamentos essenciais e pelo empenho dedicado na
revisão de todo o meu trabalho.

E pelo interesse e apoio demonstrado, e por nutrir um ambiente dinâmico de descoberta e
iniciativa no seio da Brisa, agradeço especialmente ao Professor João Bento.

2

Sumário

Esta dissertação usa a Separação Multi-Dimensional de Assuntos (MDSoC) para estudar a
composição de software. A composição de software endereça as dificuldades de
modularização típicas que existem nas abordagens actuais da Engenharia de Software, como
por exemplo as Orientadas aos Objectos. O MDSoC oferece o mesmo mecanismo de
modularização multi-dimensional unificado para todas as fases do ciclo de vida do software.
Este mecanismo de modularização complementa as abordagens existentes, em vez de as
substituir.

Grande parte do trabalho aqui apresentado foca implementações MDSoC limitadas à fase da
programação. A este tipo de implementações já existentes junta-se o Hyper/Net que
desenvolvemos de forma a suportar MDSoC no ambiente Microsoft .NET. O Hyper/Net
baseia-se nos tipos parciais (do inglês partial types), que são uma funcionalidade nativa das
linguagens .NET. A utilização de funcionalidades nativas das linguagens para o MDSoC é
uma inovação e é possivelmente uma das contribuições mais interessantes deste trabalho.
Como forma de validação, o Hyper/Net foi analisado à luz do modelo MDSoC e comparado
com outras implementações. Foi também utilizado na implementação de casos de estudo
simples, que mostram os benefícios do MDSoC. Finalmente, os resultados de cada caso de
estudo foram validados através da utilização de testes unitários, adaptados ao MDSoC.

3

Abstract

This dissertation uses Multi-Dimensional Separation of Concerns (MDSoC) to focus on
software composition. Software composition emerged as a response to difficulties found in
modularization with standard Software Engineering approaches such as Object Oriented
approaches. MDSoC provides a unified multi-dimensional modularization mechanism that is
usable across all the stages of the software lifecycle. This modularization mechanism
complements the existing approaches, instead of replacing them.

Most of the work presented in this document addresses MDSoC implementations for
programming. We developed such an MDSoC implementation for Microsoft .NET and called
it Hyper/Net. Hyper/Net is based on partial types, which is a native feature of .NET
languages. Relying on native language features for MDSoC is a novelty and is possibly the
most interesting contribution of this work. To validate Hyper/Net, it was analyzed in the light
of the MDSoC model and compared with other MDSoC implementations. Hyper/Net was also
used to implement simple case studies that show the benefits of MDSoC. Finally, the results
of each case study were validated by a unit testing approach, which was adapted for MDSoC.

4

Life hanging from petals

A seed into the ground
taken there by a myriad small things

growing into time
roots spreading and everything.

First a flower,

small, shy, fragile,
managing energy against entropy,

to grow wider, deeper in color,
scenting all around the tree,

and also everyday easier to see.

Petals have their time to be,
a fruit was an aim

and the flower just something to see?
Many surely disagree,

but the juicy fruit,
the aim,

is what ends up showing itself to me.

Picking it could come from necessity
but if weeks before

reaching at the same tree
you would be picking

out of curiosity
and, well, then the fruit wouldn't be.

Knowing not of words,

not even capable of planning,
something simple,

like planting another tree.
Both fruit and flower serve their purpose

and I figure Shakespeare could say "they be".

TheDruid (2003)

5

Symbology and Notations

� Italics are used to introduce new concepts and also to represent entities from the
programming artefact of our examples (methods, classes, etc.).

� Closed braces [] are used to identify bibliographic references, which are listed from page
134 onwards.

� The Courrier New font is used to present snippets or entire blocks of source code.

� This dissertation is organized using a chapter – section – subsection hierarchy.

6

Contents

Chapter 1 Introduction .. 11
1.1 Goals of this dissertation... 12
1.2 Contribution of this work.. 12
1.3 Document structure... 13

Chapter 2 Subject Oriented Programming ... 15
2.1 The SOP model .. 15
2.2 Detailing the SOP composition model .. 17
2.3 Software Engineering benefits of SOP .. 17
2.4 Subject Oriented Design ... 18
2.5 Conclusions.. 19

Chapter 3 Multi-Dimensional Separation of Concerns (MDSoC) and Hyperspaces 21
3.1 The need for MDSoC.. 21
3.2 The MDSoC hyperspace model .. 23

3.2.1 Hyperslices ... 25
3.2.2 Hypermodules... 28
3.2.3 SOP and the MDSoC hyperspace .. 29

3.3 Using MDSoC: Examples... 30
3.3.1 The Expression SEE example ... 30
3.3.2 Other examples ... 34

3.4 Conclusions.. 35
Chapter 4 Technological background .. 37

4.1 The Java programming language .. 37
4.2 Microsoft .NET Framework.. 38

4.2.1 The C# programming language ... 40
4.2.2 The VB.NET programming language.. 40
4.2.3 Partial Types... 40
4.2.4 SharpDevelop ... 42
4.2.5 Microsoft Visual Studio .. 43

4.3 Conclusions.. 43
Chapter 5 MDSoC implementations.. 45

5.1 Hyper/J... 45
5.1.1 Dimensions, concerns and hyperslices... 46
5.1.2 Hypermodules... 48
5.1.3 Usage and reuse .. 51
5.1.4 Limitations.. 51

5.2 HyperC#... 53
5.2.1 Dimensions, concerns and hyperslices... 53
5.2.2 Hypermodules... 55
5.2.3 Limitations.. 55

5.3 Conclusions.. 56
Chapter 6 Hyper/Net: An MDSoC solution for .NET languages.. 57

6.1 The Partial Types MDSoC approach... 57
6.1.1 Dimensions, Concerns and Hyperslices... 58
6.1.2 Hypermodules... 61
6.1.3 Model Limitations... 62

6.2 The Hyper/Net MDSoC approach... 64
6.2.1 Dimensions, Concerns and Hyperslices... 66
6.2.2 Hypermodules... 66

7

6.2.3 Model Limitations .. 67
6.3 Conclusions.. 69

Chapter 7 Using Hyper/Net... 71
7.1 Using the Partial Types approach for MDSoC .. 71
7.2 Using Hyper/Net for MDSoC ... 74

7.2.1 Using Hyper/Net in SharpDevelop.. 78
7.2.2 Using Hyper/Net in Visual Studio... 79

7.3 Testing with MDSoC.. 80
7.4 Example: a Toll implementation ... 81
7.5 Example: the Expression SEE... 88
7.6 Conclusions.. 96

Chapter 8 Hyper/Net implementation.. 97
8.1 The process .. 98
8.2 Hyper/Net internal architecture... 100

8.2.1 Composition attributes class library .. 103
8.2.2 Command line application .. 106
8.2.3 Testing Hyper/Net .. 116

8.3 Conclusions.. 117
Chapter 9 Comparing MDSoC implementations ... 119

9.1 Comparison criteria .. 119
9.2 Comparison summary... 120
9.3 Context... 122
9.4 Hyperslices... 122
9.5 Hypermodules .. 123
9.6 Reuse ... 124
9.7 Usage ... 125
9.8 Other Limitations ... 125
9.9 Conclusions.. 125

Chapter 10 Conclusions and Future Work... 127
10.1 Results.. 127

10.1.1 The Expression SEE case study .. 128
10.1.2 Public presentations .. 128

10.2 The history of Hyper/Net.. 129
10.3 Future work.. 129

10.3.1 Extensions to Hyper/Net composition ... 130
10.3.2 Extending Hyper/Net support for reuse ... 130
10.3.3 Holistic MDSoC and Hyper/Net ... 131

10.4 Concluding remarks.. 133
References ... 135

Apendix I Hyper/Net source code.. 139

I.1.1 Language Features – Merge Concern .. 140
I.2 Hyper/Net Console Application .. 141

I.2.1 Features – Flow Control.. 141
I.2.2 Features – Input .. 143
I.2.3 Features – Kernel.. 145
I.2.4 Features – Output ... 145
I.2.5 Features – Parse Preparations.. 146
I.2.6 Features – Parsing... 147
I.2.7 Features – Namespace Composition.. 148
I.2.8 Features – Partial Type Composition .. 148
I.2.9 Language Features – Bracket Concern .. 150

8

I.2.10 Language Features – Merge Concern .. 153

Figures

Figure 1. A representation of the MDSoC hyperspace. Hyperslices contain the
implementation units. Only the implemented concerns are populated by hyperslices. 24
Figure 2. The hyperplane that is defined by a concern. ... 27
Figure 3. Class hierarchy used in the Expression example. ... 30
Figure 4. Representation of the MDSoC hyperspace used for the Expression SEE example.. 32
Figure 5. Typical .NET compilation and runtime process. .. 38
Figure 6. Example of a directory structure implementing a 2D hyperspace with a single class.
.. 58
Figure 7. Simplified block diagram for the .NET partial types MDSoC approach. 59
Figure 8. External perspective for the Toll class. .. 82
Figure 9. Class diagram for the partial Toll class inside the Charging concern. 83
Figure 10. Class diagram for the partial Toll class inside the Traffic Management concern... 84
Figure 11. Class diagram for the partial Toll class inside the Congestion Charging concern.. 85
Figure 12. The class hierarchy in the Kernel concern of the Expression SEE example. 89
Figure 13. Class diagram for the Display concern... 90
Figure 14. Class diagram for the Evaluation concern. ... 91
Figure 15. Class diagram for the Check concern... 92
Figure 16. Class diagram for the Style Check concern.. 93
Figure 17. Class diagram for the Expression class in the Logging concern. 94
Figure 18. Illustration of a procedural view of Hyper/Net... 98
Figure 19. Hyper/Net viewed from the project dimension perspective. 100
Figure 20. Representation of the MDSoC hyperspace used for Hyper/Net. 101
Figure 21. Class diagram for the Bracket concern in the Hyper/Net attributes class library. 104
Figure 22. Class diagram for the Merge concern in the Hyper/Net attributes class library... 105
Figure 23. Class diagram for the complete Hyper/Net console application.......................... 106
Figure 24. The partial class diagram for the Flow Control concern. 107
Figure 25. The partial class diagram for the Input concern.. 108
Figure 26. The partial class diagram for the Kernel concern. .. 109
Figure 27. The partial class diagram for the Output concern. .. 109
Figure 28. The partial class diagram for the Parse Preparations concern. 110
Figure 29. The partial class diagram for the Parsing concern. ... 110
Figure 30. The partial class diagram for the Namespace Composition concern. 111
Figure 31. The partial class diagram for the Partial Type Composition concern. 112
Figure 32. The partial class diagram for the Bracket concern.. 113
Figure 33. The partial class diagram for the Merge concern.. 114
Figure 34. The partial class diagram for the Tests concern.. 117

Listings

Listing 1. Declaration of the Fish partial class in the first file, using C#. 40
Listing 2. Declaration of the Fish partial class in the second file, using C#........................... 40

9

Listing 3. Syntax of the override composition attribute... 75
Listing 4. Syntax of the merge composition attribute.. 75
Listing 5. The MethodMergeResult delegate type used by result merger methods................. 75
Listing 6. Syntax of the bracket composition attribute. ... 76
Listing 7. Before and after methods implement delegate types. .. 76
Listing 8. Partial Toll class implementing the charging requirement (Charging concern). 83
Listing 9. Partial Toll class implementing the vehicle counting requirement in the Traffic
Management concern. .. 84
Listing 10. Partial Toll class implementing the congestion charging requirement (Congestion
Charging concern).. 86
Listing 11. Test methods in the Charging concern. ... 86
Listing 12. Test methods in the Traffic Management concern... 87
Listing 13. Test method in the Congestion Charging concern. .. 88
Listing 14. The Variable partial class in the Style Check concern... 93
Listing 15. Bracket attribute declaration for the logging feature. ... 95

Tables

Table 1. Comparison chart of MDSoC implementations.. 121

10

11

Chapter 1

Introduction

Software Engineering, as a branch of Engineering, provides a body of approaches that can be
used to develop, operate and maintain software in a systematic, disciplined and quantifiable
fashion [IEEE90]. These approaches break-up the process of software development into
different, interrelated stages. Each stage in a software development approach is usually
addressed by a different field of Software Engineering. This allows each field to focus
particular aspects of the development process and allows the clear separation of the different
needs that arise during software development. This separation is adequate for development
because most approaches complete one stage before moving to the next, allowing the gradual
detailing of the software pieces as they are developed.

This would be perfect if development was a completely planned task, done in a single
iteration. On the contrary, most software has to evolve after its initial development is
considered finished. Software evolution affects most stages of the Software Engineering
approach that was applied. Evolution will require revisiting each stage and working in the
context of the existing software elements. In fact, most problems in Software Engineering
arise during evolution, after systems are initially developed and deployed. This happens
because the software is initially developed to be optimally organized for its purpose,
eventually leaving room for a few predicted improvements. As practice dictates, new features
are usually not predicted or expected and, thus, require being implemented into the existing
structure that was not designed for them. As a result, adding features becomes time-
consuming and, eventually, risky. Even worse, it directly contributes to lowering the quality
of the original implementation, leading way to a cycle in which software becomes degraded
and more complex, as time, and enhancements, go by [Lozano06]. This cycle also causes an
increasing difficulty in making changes to the software.

It is true that risk can be minimized by using adequate tests and adopting a test driven
development approach. Still, testing does not help avoid the degradation of the
implementation. It is also true that many changes that are not specifically planned can be
supported using general extension approaches, like those provided by some design patterns.
But, supporting changes comes at the cost of implementing these extensions during initial
development. Furthermore, not all changes will be supported by these extensions.

Refactoring can be used to mitigate the degradation of existing software implementations,
when new features are introduced, by adapting the existing software organization to the new
requirements. Still, it would be desirable to support the new features required by evolution as

12

if they had been introduced during the initial development. None of the previous solutions can
fully achieve this requirement. Yet, this is achievable if software captures the features alone
and then integrates them with each other. This way, when introducing new features, the
existing features do not need to be changed, but, only their integration does. This is the
principle behind a set of solutions called composition solutions. This document focuses on
one such solution in particular: Multi-Dimensional Separation of Concerns (MDSoC). As we
will see, MDSoC is especially important because it supports the same multi-dimensional
organization of software across the different stages of development.

1.1 Goals of this dissertation

The main goal of our work was to be able to use MDSoC while programming in .NET
languages, in particular C#. It should be possible to use existing development infrastructures
and as little as possible should need to be changed in the development process, apart from
adopting an MDSoC approach.

After achieving this first goal, the adequacy of the MDSoC features possible with .NET
languages should be validated. To do this, a classic example in MDSoC literature, the
Expression SEE, should be implemented using .NET languages and MDSoC.

Finally, to guarantee that the example worked properly, it should be adequately tested for
local functionality as well as overall functionality and the different possible combinations of
functionality achieved by removing particular features.

1.2 Contribution of this work

As stated, our main goal was to implement MDSoC for Microsoft .NET, which is a multi-
language programming environment. Other contributions were gradually achieved in a natural
way as we used, evaluated and contextualized our MDSoC implementation. Namely, by
providing examples of MDSoC usage, introducing a testing approach tailored for MDSoC and
comparing existing MDSoC implementations.

To implement MDSoC for .NET, first, we identified important separation of concerns
capabilities in partial types, which is a native feature of .NET 2.0 languages. This enabled us
to develop a simple MDSoC approach using partial types (Section 6.1). This approach
requires no other software aside from the Microsoft .NET framework and its standard
development tools. This may be considered an innovation as most composition solutions
require additional software, other than the original language compilers. The partial types
approach is limited to composing types, which limits its abilities to separate concerns. It was
extended to support method composition by developing Hyper/Net (Section 6.2).

With Hyper/Net we were able to develop small examples where the benefits of using MDSoC
are clear. The examples themselves, in particular the ones presented in Sections 7.4 and 8.21,
provide a small contribution, as they differ from the traditional MDSoC examples one can
find in the existing literature. Due to time constraints and the prototype nature of Hyper/Net, it

1 Hyper/Net was implemented using the partial types MDSoC approach and its implementation is presented as an
example of MDSoC usage.

13

was not possible to use it to develop a real-world application, which could provide further
support regarding the benefits of MDSoC.

The need to test our small MDSoC examples motivated us to explore a testing approach that
is adequate for MDSoC. This testing approach is presented in Section 7.3, as part of a chapter
that addresses the more pragmatic aspects of the partial types approach and Hyper/Net.

Finally, existing MDSoC implementations are presented in Chapter 5 and compared with
Hyper/Net in Section 9.2.

1.3 Document structure

This dissertation can be divided into three parts. The first part, from Chapter 2 to Chapter 5,
provides background information on composition solutions and existing MDSoC
implementations. The second part, from Chapter 6 to Chapter 8, presents our own MDSoC
implementation: Hyper/Net. The third part, Chapter 9 and Chapter 10, wraps-up the
dissertation by comparing all the MDSoC implementations, providing conclusions and
presenting future work. Finally, the document closes with Apendix I, where the Hyper/Net
source code is listed.

It may also be adequate to separate the first two chapters (Chapter 2 and Chapter 3) from the
following chapters, as they present the models of composition solutions. The following
chapters (Chapter 4 to Chapter 8) address MDSoC composition implementations rather than
the model.

This document starts by presenting two composition approaches. The first, Subject Oriented
Programming (SOP), is presented in Chapter 2. SOP proposes a multi-perspective view of
OOP, with different classes implementing different views of the same object. Next, Chapter 3
presents the MDSoC model as an elaboration of the SOP model. MDSoC introduces a
structure for holding the views of the SOP model and provides a unified multi-dimensional
view of the different stages of software development.

The remaining of this document focuses on MDSoC implementations. Chapter 4 provides the
necessary technical background regarding the languages and platforms used in the MDSoC
implementations. Chapter 5 presents two different MDSoC implementations, one targeting the
Java language (Hyper/J) and, another, the C# language (HyperC#). Chapter 6 presents two
MDSoC approaches that were developed by us: the .NET partial types approach and
Hyper/Net. They are evaluated from the perspective of the MDSoC model presented in
Chapter 3. Chapter 7 is targeted at developers and architects and describes how both of our
MDSoC approaches can be used. It also provides details on how to test MDSoC programs. It
ends with two complete examples of simple programs developed using our MDSoC
approaches. Chapter 8 describes the architecture and implementation of Hyper/Net from an
MDSoC perspective.

Chapter 9 compares the different MDSoC implementations according to architectural,
structural, compositional, usage and reuse criteria. Finally, Chapter 10 provides conclusions
on our work and identifies possible directions for future work, both for Hyper/Net and for the
remaining focus points of this document.

14

15

Chapter 2

Subject Oriented Programming

Subject-Oriented Programming [Harrison93] was introduced in 1993. Subject-Oriented
Programming (SOP) extends the Object Oriented Programming (OOP) model by sub-dividing
class-hierarchies into subjects that latter are composed together. Subjects can be seen as
containers for classes under a specific point-of-view or perception of the world. A class,
which usually agglomerates several different points-of-view in OOP, will give away to
several different classes in SOP, each located in the appropriate subject container. Subjects act
solely as containers and the classes contained by them will still be constructed in a fully OOP
manner. While some subjects will be useful in a standalone fashion, most require composition
with other subjects to extend their usefulness.

This chapter starts by presenting the SOP model according to [Harrison93]. Next the SOP
composition model is analysed in more detail, based on the SOP composition model as
presented in [Ossher96]. After that, the benefits of SOP for software engineering are
overviewed. Finally, Subject Oriented Design, an extension of the SOP approach for UML
design diagrams, is presented.

2.1 The SOP model

SOP allows the separation of classes into different subjects. In order to be useful, most of the
classes inside these subjects must be composed. One of SOP’s composition mechanisms is
additive composition. Additive composition combines all aspects of the composed elements.
SOP supports a particular additive composition, merge composition [Harrison93]. With merge
composition, if different subjects implement the same method for a composed class, when the
method is invoked, all corresponding methods in each composed subject will be invoked in
turn. A different composition method, nesting, is also proposed in [Harrison93]. Nesting uses
the order of compositions to create scopes in which to invoke methods. The more recent
compositions are the ones that are readily available for method invocation.

Composition enables instances of classes in different subjects to be correlated. At runtime this
is done through identity elements called oids (object identifiers). If two classes from different
subjects are composed together, by creating an instance of one of these classes, an instance of
the other will also be created. These classes are related by a common oid that is allocated
during initialization. Two initialization models are proposed in [Harrison93]: an immediate

16

and a deferred initialization model. Deferred initialization offers better performance than the
OOP equivalent of the composed subjects, especially when several subjects are being
composed. In immediate initialization all classes associated with the newly created oid are
initialized at the same time during object initialization. In deferred initialization, classes
associated with the newly created oid are only initialized the first time a method or variable
they offer is accessed. Deferred initialization has a requirement that constructors do not have
any parameters. According to [Harrison93] the absence of construction parameters is also
beneficial for adding new subjects without the need to change class construction,
independently of the initialization model. Otherwise, if constructor parameters are used,
constructor composition would become more complex (or even impossible) in order to
support deferred initialization or adding new subjects dynamically.

Composition requires that classes are matched between different subjects. One simple method
is explicit matching by class names. Even this simple matching mechanism enables subjects
to have exclusive classes that match no other subjects. This allows each subject to hold its
own class hierarchy, having only a subset of its classes that explicitly match other subjects’
classes. Sometimes there is also advantage in matching some of these classes that have no
explicit matching. [Harrison93] explores some non-explicit matching methods.

When different class hierarchies are being combined, there are several detriments to keeping
each existing inheritance structure while matching different class hierarchies. First of, there
might be no semantic value attributable to the combined inheritance structure; the hierarchies
might make sense only in the context of each subject. Furthermore, the resulting class
hierarchy might exhibit cycles and the diamond problem. Finally this approach limits the
composition of subjects from different languages as semantic details with their own
inheritance mechanisms would have to be integrated (for example multiple-inheritance). As
such, [Ossher96] introduces the process of flattening class hierarchies prior to composition.
Flattening is the process of copying all inherited methods and variables to the classes being
matched and removing all inheritance information. This way, there is no class hierarchy in the
composed result. This might be an acceptable result, especially taking into account
[Harrison93] advises against extending the composition result itself. [Harrison93] suggests
that all work should be done in each subject prior to composition.

While creating or extending an application with SOP, subjects may be added as needed. For
instance, if a certain class starts to grow in a particular subject and parts of the class do not fit
the subject’s scope anymore, those parts may be factored out into an appropriate new subject.
As such, subjects can start-out with only a single class and then grow as other classes fit the
subject. This way some subjects might be more important than others: one such subject is the
“intrinsic” subject referred by [Harrison93]. An “intrinsic” subject usually captures internal
state and essential behaviour of a particular object, with other subjects capturing elements
from the perspective of external viewers of the object. In most cases, the “intrinsic” subject
will become the dominating subject in a SOP application. This might be limiting to other
subjects but in fact is not, as SOP enables each subject to have its own class hierarchy,
independently from the “intrinsic” subject hierarchy. Nevertheless [Harrison93] leaves it up to
the designer or programmer to determine if an “intrinsic” subject should be used or if a more
equalitarian subject space is appropriate.

17

2.2 Detailing the SOP composition model

A more formal model for SOP is also presented in [Harrison93]. In this model composition is
presented as a tuple (R, Q) where R is a composition rule and Q is a set of components. These
components can be either subjects or other compositions, making composition rules in this
model recursive. [Harrison93] does not detail the nature of composition rules R, but, to allow
reuse, these should be general (like merge), unbound to subject elements. In such case, there
is a major limitation in this model as it only enables the composition of entire subjects and
does not offer constructs to compose elements from each subject in different ways. The
granularity of the composition mechanism defines its power. Versatile composition
mechanisms that are able to operate simultaneously at different levels are the most powerful
solution. [Ossher96] introduces such a model for subject composition. This model overcomes
the limitations of the [Harrison93] model by using general rules together with a set of
exceptions clauses. Exception clauses enable defining special composition behaviour at a
finer granularity than the rules which operate at the entire subject level. In fact, general rules
are created in a modular fashion from the same clauses which are used for expressing
exceptions. Many aspects of the general rules construction are parameterizable when general
rules are used. As such, the model introduced in [Ossher96] is customizable, by allowing the
parameterization of existing rules, and extensible, by allowing the creation of completely new
rules.

[Harrison93] does not define a structuring mechanism for the subject space. Nevertheless, the
hierarchic nature of composition (due to its recursiveness) offers some structuring support.
Different orders in the hierarchy of composition can be used to structure our subjects
differently. But relying on composition to structure a subject space is too limited; the subject
structure will always be influenced by the semantics of composition. This may not be an issue
in small subject spaces, but for larger subject spaces, SOP lacks a specific subject structuring
mechanism.

2.3 Software Engineering benefits of SOP

[Harrison93] also presents implications of SOP in software engineering. New subjects can be
added to running applications without requiring their recompilation. This is an important
technical achievement with several implications in project development methodologies. By
supporting runtime extension of software, features can be deployed incrementally as they are
designed, developed, composed and tested, without affecting the availability of the running
environment. SOP also provides increased encapsulation as composition is external to
subjects, so these are independent and need not be changed for integration. This enables the
standalone creation and evolvability of subjects without imposing it. It is always possible to
develop tightly coupled subjects or loosely coupled subjects with particular compositions in
mind.

[Ossher96] introduces the idea of composing subjects written in different languages. This is
also a very important concept because it would enable the choice of the most appropriate
language to implement a particular subject. This way, some subjects could use logic
programming while others OOP or other appropriate paradigms.

[Ossher96] also proposes the usage of subjects for separating the code according to the
different requirements identified during analysis. This is an important step as it will enable a
direct mapping of requirements to design and code as presented in [Clarke99].

18

2.4 Subject Oriented Design

SOP is tailored for the modularization of code. Nevertheless, subject containers seem
adequate to be applied to other artefacts of the software lifecycle, namely design and analysis
artefacts. This is especially true if taking into consideration the proposal of using subjects to
directly map different requirements [Ossher96]. As such, [Clarke99] introduces a Subject
Oriented Design (SOD) model.

To understand the need for SOD, [Clarke99] introduces several issues in mapping
requirements to object oriented design. The artefacts involved in the software lifecycle have
their own decomposition mechanisms. Though, most artefacts are limited to one kind of
decomposition. Typical analysis processes are based on functional decomposition by
requirements. Object oriented design and programming both lack a functional decomposition
mechanism but instead provide object decomposition. Object decomposition is useful as it can
match concepts of the application domain and categorize them. But artefacts are not isolated,
there is need to map analysis requirements to design and then to code. If such mapping is
effective, requirements can be traced throughout artefacts. In fact, other kinds of
decomposition, namely objects, can also be used for such tracing (usually from code to design
and requirements). In reality, because artefacts have different and incompatible
decompositions, a direct mapping is impossible. Functional components (namely analysis
requirements) are scattered throughout several objects (in object oriented design and code)
and different objects are tangled within requirements. Direct traceability between artefacts is
thus impossible when the artefact decomposition mechanisms do not match.

Before introducing the SOD solution, [Clarke99] tries to use the object decomposition, in
particular inheritance, to create functional decompositions for a specific example. In
[Clarke99]’s example, there is a requirement that maps to extending a particular method,
shared by several classes in a hierarchy. To implement this requirement in a decomposed
fashion, each existing class is extended using inheritance. Each extended class will have an
override of the existing method that implements the new requirement, also invoking the
existing functionality. After the addition of a few features, using this kind of decomposition,
the class hierarchy will have grown several times in size. At this point, the addition of new
class elements will also require the creation of all the subclass structure introduced by
features, resulting in a combinatorial explosion. Thus, using inheritance to complement object
decomposition with functional decomposition negatively affects object decomposition.

[Clarke99] and [Tarr99] also explore design patterns in search of solutions to align the object
decomposition with the functional decomposition. For instance, the Visitor pattern decouples
functionality from the objects themselves by having a receiver method in each object and, for
each functionality, a visitor class with a set of visitor methods2. Nevertheless, receiver
methods still need to exist outside the features themselves, scattered throughout the class
hierarchy. Adding new classes requires the creation of new visitor methods in each feature
that is decomposed as a visitor. Furthermore, not every feature is prone to decoupling through
the Visitor pattern. Other design patterns can help when the Visitor pattern is not applicable,
but exhibit similar issues. For instance the Observer pattern, which is particularly useful for
decoupling logging requirements, scatters notification invocations throughout the object
decomposition. Other solutions using factories or proxies are also intrusive, requiring changes
to the object types handled by existing code. More generally, solutions based on design-
patterns require previous planning, for example by the introduction of hooks, visitor methods,

2 There will be as many visitor methods in the visitor class of a particular functionality as the number of objects
that are affected by it.

19

observer notifications or changing the object types used. Otherwise, introducing such
elements latter on will involve an intrusive change.

[Clarke99] introduces design subjects as a functional decomposition for object oriented
design. Each subject regards only a particular feature or non-functional requirement (like
logging or security requirements) and exists both in design and code. Like in SOP, each
subject is constructed by objects. So the functional decompositions introduced by subjects
contain object decompositions. This way, subjects are not expected to limit the de-
compositional power of object oriented design. The premise of enabling work to be done
using existing languages and formalisms found in SOP is kept in SOD. [Clarke99] instantiates
SOD for use with UML, in particular class and interaction diagrams. Each design subject
contains a partial class diagram which will be composed with other subject’s class diagrams
to form a complete class model. Even though class diagrams are partial, each subject’s class
diagram will need to be complete in regards to the subject’s functionality (i.e. the diagram
may not reference functionality that it does not offer itself). This requirement is know as
declarative completeness [Ossher99]. [Clarke99] gives an example of two features, each in its
own subject, that use the same class hierarchy. Each subject needs to access data items about
each class. As both features need these data items, they are replicated in the class diagram for
each feature (subject). When it comes to implementation, declarative completeness may force
each subject to hold replicated implementations. To avoid replicated code, [Ossher99]
proposes for MDSoC the SOP equivalent to having only one subject actually implementing
the replicated functionality while others only declare it (e.g. using abstract methods).

[Clarke99] introduces an additional composition construct: select composition. Select
composition brings the novelty of being able to decide how to mix-and-match3 features during
runtime (based on runtime variables or configuration elements). Subjects composed using
select composition can have a runtime variable determine which of them, or group thereof,
will be chosen for execution. SOP only provides native support for static mix-and-match.

2.5 Conclusions

SOP retains OOP at its core but uses subjects as containers for different aspects of the same
concept. It implements different kinds of subject composition, among which additive
composition. In SOP, as a result of a process called flattening, existing class hierarchies are
not retained after composition. SOP can also provide advanced composition features, like
allowing the introduction of new features during runtime or being used to compose subjects
written in different languages.

SOP brings functional decomposition to programming and, with it, additive change
capabilities. SOD brings these to design. With SOD and SOP, direct traceability from
requirements to code is achieved, even with design and programming formalisms that favour
decomposition methods other than functional decomposition.

3 Mix-and-match refers to the possibility of creating different flavours of a program by removing and introducing
different features and components. In SOP, this is achieved statically with different subject compositions. Each
subject composition can generate a different program.

20

21

Chapter 3

Multi-Dimensional Separation of Concerns

(MDSoC) and Hyperspaces

Multi-Dimensional Separation of Concerns (MDSoC) was introduced in 1999 [Tarr99]. Like
Subject Oriented Programming (SOP), MDSoC is a composition solution.

This chapter starts with a section justifying the need for MDSoC. This is done by
acknowledging the domination of a particular decomposition criterion in each different
formalism. One such case is the domination of the object-decomposition in OOP. MDSoC
follows-up on the work done in SOP to address this issue. It extends SOP support for
separation of concerns in the code artefact to a generalized model usable along multiple
artefacts. MDSoC adopts a multi-dimensional structure for concern spaces that did not exist in
SOP. In MDSoC, these structured concern spaces are called hyperspaces.

The MDSoC model is presented in Section 3.2, following [Tarr99] [Ossher99] and [Tarr01].
It is separated according to the two main stages in adopting the MDSoC model:
decomposition and composition. Decomposition is achieved by populating a hyperspace
which is structured by dimensions with the respective concerns. Composition is achieved by
means of a separate composition definition: hypermodules.

Section 3.3 presents the Expression SEE example which is an example of MDSoC usage
explored in most MDSoC literature, namely [Tarr99] [Ossher99] [Ossher00] and [Tarr01].
This example is also presented here as its implementation using Hyper/Net (our MDSoC
implementation) will be detailed in Section 7.5.

3.1 The need for MDSoC

Section 2.4 addressed a relevant limitation commonly exhibited by most software artefact
formalisms. Most of these only allow one dimension of decomposition, be it functional, object
or any other. [Tarr99] calls this issue the “tyranny of the dominant decomposition” and
considers it the major issue addressed by MDSoC.

Section 2.4 presented examples where the dominant decomposition of a particular artefact is
used to support a different dimension of decomposition. One such example, in the code

22

artefact, using the OOP formalism, is that classes can be extended to separate their support of
different features. In this example, the object dimension, that is dominant in OOP, is used for
decomposition in the functional dimension. Although decomposition in a dimension other
than the dominant one is achieved with these examples, the dominant decomposition is lost.
In the previous example, the objects from the problem domain will end-up scattered in several
sub-classes. Thus, even if the dominant decomposition of an artefact can be used for a
different dimension of decomposition, it will only be usable for that dimension and looses its
decomposition power in the dominant one. Furthermore the decomposition achieved in
dimensions other than the dominant one is not at all optimized. Frequently, it is necessary to
rely on artificialities: for example, the sub-classes from our previous example would identify
features by a suffix in their name. As expected, some kind of alternative decomposition
mechanism is required to achieve decomposition in more than one dimension with these
formalisms.

Subject Oriented Design primarily addressed the issue of traceability from (functional)
analysis to design and code. As such, Subject Oriented Design enhanced UML (an object
oriented design formalism) to contain an additional decomposition along the functional
dimension. This was achieved with the introduction of design subjects in UML. Subject
Oriented Programming provided support for the same functional decomposition in the code
artefact with subjects. But neither Subject Oriented Design nor Subject Oriented
Programming were limited to adding only the functional dimension of decomposition to
artefacts. In fact, several dimensions could be handled at the same time, given that appropriate
subjects were introduced.

MDSoC is a follow-up to the work on Subject Oriented Programming by Harrison and
Ossher. MDSoC supports multiple dimensions of decomposition in much the same way that
Subject Oriented Programming and Subject Oriented Design do. That is, by separating
concerns (Subject Oriented Programming and Subject Oriented Design did it using subjects4)
and then providing a composition mechanism to compose the separated concerns into working
blocks of software. In Subject Oriented Programming, subjects from all the dimensions will
coexist at the same level. Thus, although SOP supports multiple-dimension decomposition, its
model does not acknowledge this with any kind of structure for subjects, leaving them in an
unorganized space. Additionally, SOP literature [Harrison93] [Ossher96] does not refer to
multiple-dimensions of decomposition: it was MDSoC literature that acknowledged this
concept [Ossher99] [Tarr99].

We have seen that SOP lacks an organization mechanism for its subject space. The semantics
of composition impose the structure of this subject space, not allowing a structure based on
different requirements. Furthermore, this structure only exists after a particular composition is
done. There will still be no structure for the original subjects when using them in different
compositions. MDSoC overcomes these limitations of SOP with a model for hyperspace that
provides natural support for decomposition along multiple-dimensions.

SOP addressed only the code artefact in the OOP formalism. Subject Oriented Design had to
be introduced to address the same needs at design level. MDSoC has a different approach.
The MDSoC model was defined at a more abstract level, allowing it to be applied to all kinds
of software artefacts and formalisms. MDSoC defines a hyperspace structure for concerns
which is populated by elements from any artefact. This way, a particular concern will contain

4 MDSoC concerns and SOP subjects can be seen as container elements for software units, where each container
element represents a different perspective. The term “concern” was introduced with this meaning by Dijkstra
[Dijkstra74]. [Dijkstra74] also introduced the concept of separation of concerns as a “technique for effective
ordering of one’s thoughts”.

23

all relevant elements from the different artefacts. MDSoC refers to concerns instead of
subjects, but these entities are pretty much equivalent; that is, concerns and subjects are both
semantically significant containers. In the case of SOP, subjects can only contain elements
from OOP code, while in MDSoC concerns can contain elements from any artefact
formalism.

The MDSoC model works only as a complement to existing formalisms. MDSoC does not
introduce any new formalism itself. This way, it should be easily used by anyone already
acquainted with a particular set of formalisms. MDSoC can be used straight from the
beginning of a software project until the end, being applied to the whole software lifecycle, or
it can be applied at any point of the software lifecycle. In particular MDSoC can be used for
refactoring existing programs, allowing an easier extension and evolution of these programs.

MDSoC shares with Subject Oriented Design the objective of fully supporting direct
traceability between artefacts. MDSoC also aims to achieve a very high level of
modularization flexibility to address complexity and provide comprehensibility for otherwise
unintelligible software. MDSoC aims to promote reuse based on its advanced modularization
capabilities, which also help to achieve a high level of decoupling. Finally, MDSoC should
ease evolution by achieving a high level of decoupling, providing elevated comprehensibility
and offering direct traceability between artefacts.

3.2 The MDSoC hyperspace model

MDSoC is centred on the MDSoC hyperspace, which is a multi-dimensional concern space.
As can be seen in the previous section, concerns are a key element in MDSoC. Throughout
[Tarr99] there are several references to different kinds of concerns such as functional
requirements, customizations, concepts5 (objects) and non-functional requirements. Many
concerns will exist, belonging to each of these kinds. Features will usually map to functional
requirement concerns, but some features might be achieved by offering customization
concerns (on existing functional requirement concerns). Other features, like persistence and
security, are non-functional, thus map to non-functional requirements. Non-functional
requirements usually affect the entire functional concern set, thus they are overlapping. All of
these different features will be related with real-life or virtual concepts or entities that make-
up the problem domain, and form themselves one kind of concern. Each of the concerns
belonging to the prior kinds may contain up to the entire set of concepts of the domain, thus
overlapping with the concept concerns.

It can be observed that most of the different kinds of concerns overlap. This is one of the main
issues addressed by MDSoC. In MDSoC, each of these concern kinds can be considered as a
different dimension. Concerns define the coordinate system of each dimension, as can be see
in Figure 1.

5 It is important to stress that concerns and concepts are not the same thing. Concepts are representations of real-
life or virtual objects while concerns are abstract grouping elements. At some points [Tarr99] uses the words
concepts and concerns interchangeably.

24

Figure 1. A representation of the MDSoC hyperspace.
Hyperslices contain the implementation units.

Only the implemented concerns are populated by hyperslices.

During the software lifecycle, concerns will be implemented using different artefacts.
Initially, using requirement artefacts (like textual descriptions of requirements), then using
design artefacts (eventually UML diagrams). Finally, the running implementation has to exist
in a code artefact. But, more artefacts can be involved at this stage, namely test artefacts. The
concerns are the same throughout these artefacts. But, as stated previously, most of the
artefact formalisms only support one dimension of decomposition, called the dominant
dimension of decomposition. Concerns belonging to any other dimension (or kind of
concerns) will be scattered throughout the concerns of the dominant dimension of
decomposition. Nevertheless, they will still exist in all artefacts, even if scattered.

Artefact formalisms are not monolithic but made up of parts. [Tarr99] calls these parts units.
In MDSoC, different units may be placed under different concerns. While some units can be
further divided, others cannot. Units that can be further divided are referred to as compound
units while indivisible units are called primitive units [Tarr99]. In OOP, packages/namespaces
and classes are compound units. Methods should also be considered compound units because
they are made of statements. But, sometimes, indivisible units of an artefact are of a very low
granularity. Supporting a hyperspace made-up of primitive units of a very thin granularity is
harder than if compound units are chosen. Furthermore, very low levels of unit granularity
may not be useful if units at a higher level of granularity always belong to the same concept.
Back to OOP, even statements can be further divided. But, if we assume it would not be good
practice to have the same statement address two or more different concerns, it would be a
waste to consider statements as compound units. To cope with this, [Tarr99] defines that after
a particular level of choice, compound units may be considered as primitive units: indivisible.
As we will see, the original implementation of MDSoC for OOP – Hyper/J6 – defines that
methods are primitive units7 [Tarr01]. Hyper/J does not allow decomposition beyond
methods.

Without MDSoC we have the following decomposition hierarchy:

Artefacts → Modules → Units

There is always decomposition in the artefact dimension due to physical impositions (artefacts
are separate). The modules of each artefact then provide decomposition in the dominant

6 Hyper/J will be analyzed in some detail in section 5.1.
7 For the sake of correctness, Tarr should have defined primitive units as the smallest units that can be composed.

Dimension N

Hyperslices Concerns

Dimension 1

Dimension 2
Hypermodule

Hypermodules

25

dimension (for example, requirement specifications are decomposed functionally and in OOP
classes provide decomposition in the concept/object dimension). MDSoC introduces three
new top-level elements to this hierarchy:

Dimensions → Concerns → Hyperslices → Artefacts → Modules → Units

As seen previously, dimensions are grouping elements, holding concerns of the same kind.
These concerns exist only conceptually and need to be instantiated as hyperslices. In MDSoC,
it is common for a concern to be instantiated by a single hyperslice [Tarr99], but more than
one hyperslice can exist for a single concern [Ossher99]. Hyperslices contain units from a
particular concern. In case a concern is instantiated by a single hyperslice, as proposed in
[Tarr99], all the units pertaining to that concern will belong to its respective hyperslice. These
units may belong to different artefacts and can still be organized in the modules provided by
the artefact formalisms inside the hyperslices. As such, each hyperslice may contain a part of
the artefact dimension as well as parts of the dimensions in which each artefact formalism
provides modularization. Both the artefact dimension and the dimensions of modularization of
each formalism can exist as MDSoC dimensions.

3.2.1 Hyperslices

Concerns are abstract entities. To allow decomposition according to how units map to
concerns, hyperslices had to be introduced [Tarr99]. Hyperslices provide the mean to
implement concerns in particular artefact formalisms. Typically, each hyperslice corresponds
and implements a particular concern. Thus, each hyperslice shares with its respective concern
a place in a dimension of the MDSoC hyperspace (see Figure 1).

There are two distinct approaches to implement hyperslices in any given artefact formalism.
The authors of the MDSoC model do not discuss these at an abstract level but we consider it
an issue of importance.

One approach to creating hyperslices is to use the native decomposition features of each
formalism. These are used to create modules that map a specific concern, thus creating the
respective hyperslice. This approach can be referred to as the physical hyperslice
implementation approach as it physically separates hyperslices. For example, in OOP,
different features pertaining to the same object may be implemented in different classes. Each
of these classes will then belong to a different package/namespace (a module in OOP). The
same features for other objects may also be implemented in their own classes and share the
same packages/namespaces. Each of these packages/namespaces is in fact a hyperslice
populating our hyperspace. This example used the feature dimension, but other dimensions
could be used. We have already focused cases of decomposition along dimensions other than
the dominant one. In general, those decompositions work without any other kind of support,
but invalidate decompositions in the dominant dimension. The kind of decomposition used to
implement hyperslices is no exception, but we will see that MDSoC recovers lost dominant
decompositions as a virtual dimension. The major advantage of the physical hyperslice
implementation approach is that it allows the manipulation of hyperslices, by themselves, in a
native module of a given formalism. For instance, a developer looking at a
package/namespace that implements a particular hyperslice will only see units pertaining to
the concern of that hyperslice.

The second approach is not as intrusive as the first one. Existing units will be decomposed
along the dominant dimension of each formalism. Then a mapping system binds each of these

26

units to the appropriate concerns. This approach can be referred to as the virtual hyperslice
implementation approach as, with this approach, hyperslices are not materialized and only
exist virtually. Dimensions composed of hyperslices created this way may also be considered
virtual. The virtual hyperslice implementation approach provides the only solution to map
modules from different artefacts to the same hyperslice. It is also useful when existing
software is decomposed, especially software for which no source code is available.

The physical approach has the great advantage of allowing the native manipulation of
hyperslices, at least the parts belonging to each formalism. But the virtual approach offers
important support both when more than one formalism is used in hyperspace and when
existing software is decomposed. Thus, in practise, MDSoC uses a hybrid version of these
two approaches. This hybrid version allows the physical separation of hyperslices in each
formalism, but also offers mapping capabilities (inside the same formalism or in between
formalisms). The hybrid version allows achieving the best physical decomposition, while
having mapping capabilities to match modules in different formalisms to the same hyperslice.
Furthermore, matching can also be used to match any physically indecomposable units to
different concerns in different dimensions.

When either the physical approach or the hybrid approach is used, the dominant dimension of
decomposition of each formalism will be lost. This dimension will only be usable in a native
fashion locally in each hyperslice and in the result of composition. As such, for OOP,
[Ossher99] introduces the object dimension, which Hyper/J generates automatically as the
Class File dimension [Tarr01]. This is a virtual dimension, like the dimensions obtained from
hyperslices created using the virtual approach. Still, an appropriate tool can provide adequate
manipulation of units as seen from this dimension. The same process can be used to
implement an object dimension for artefact formalisms lacking a native object decomposition
mechanism.

The artefact dimension is not affected by any of the hyperslice implementation approaches.
Simply because there is no way to physically modularize together units from different
artefacts. Nevertheless [Ossher99] introduces the artefact dimension. The artefact dimension
is physically supported by the fact that different artefacts are implemented in different
formalisms.

In terms of the mathematical definition of a hyperspace (as a multi-dimensional coordinate
space) hyperslices are considered hyperplanes [Tarr99]. This is because they contain units
from different coordinates in the artefact dimension and in the dimensions in which each
artefact formalism provides native modularization. Figure 2 depicts an example on a
hyperplane defined by a particular concern (Feature #1) of a Features dimension.

27

Figure 2. The hyperplane that is defined by a concern.

It is important to note that units can belong to more than one hyperslice. Hyperslices that
share units are said to overlap. Sometimes overlapping hyperslices can be avoided by
decomposing the shared units, so they become distinct, and relying on composition to join
them again.

Hyperslices may depend upon units not contained there-in, thus depending on other
hyperslices that provide these units. The same thing happened with subjects in SOP. To avoid
this kind of coupling in MDSoC, [Ossher99] introduces the concept of declarative
completeness for a hyperslice. Hyperslices have to be declaratively complete, that is, they
must contain declarations for all referenced units not contained in them.

[Ossher99] adds that hyperslices in the same dimension never overlap, so one unit can exist
only once in each dimension. This is an important restriction as it enables
hyperslices/concerns to work as coordinates in each dimension of the MDSoC hyperspace.
[Ossher99] also defines that each dimension must be complete, that is, all units in hyperspace
must belong to all dimensions. This may be artificial for most situations. As such, [Ossher99]
proposes the introduction of a special concern in each dimension – the None concern –
holding all units that will not fit any of the other concerns in the dimension.

We have seen that dimensions can be defined based on the kinds of concerns emerging from a
problem domain. Knowing when to add new dimensions to an existing hyperspace is also an
important issue. [Ossher99] addresses it by realizing that hyperslices must fit in a dimension
where they do not overlap any other hyperslices. If there is no such dimension for a particular
hyperslice, either the hyperslice is incorrectly constructed or there exists no dimension
adequate for this hyperslice. This last case is when a new dimension should be created. As an
example, imagine we had the task of adding functional test methods to an OOP application

None

Artefacts

Requirements

Design

Code

Objects

Object #2

Object #1

Units

Features

F
e
a

tu
re

 #
1

Hyperplane defined
by the Feature #1
concern

28

that belongs to a hyperspace with only one non-default8 dimension: Features. Let us say these
test methods all had to access internal state of existing objects to validate certain conditions.
We would create a Test hyperslice with all the test methods required. But, we could not add
the Test hyperslice to the Features dimension as it would overlap the hyperslices of features
from which it accessed internal state. The Test hyperslice would not fit the Object dimension
either. The Artefact dimension could be a choice, but we might want to consider tests as part
of the programming artefact. If so, we had no choice but to create a new dimension to put our
Test hyperslice in.

3.2.2 Hypermodules

Finally, after the hyperspace is decomposed, to create working blocks of software, a
composition phase needs to take place. To execute this phase [Tarr99] introduces
hypermodules. Hypermodules contain hyperslices (as depicted in Figure 1) and composition
rules that dictate how to compose these hyperslices. These composition rules take units from
different hyperslices in the hypermodule and from them create resulting units. The result of a
hypermodule is then a collection of units. This result can be a complete piece of software, for
example, a library, a service or a running program. The result can belong to a single artefact
or span several artefacts. If, for example, the output of a hypermodule is a library,
composition can generate a requirement document restricted to library functionality, design
diagrams for the library, the library user documentation and the actual library code. But, the
result of composition can also be incomplete, that is, it may contain references to units that it
still does not contain, or it may fail to meet some other completeness constraint of the target
formalism (or formalisms). In this case, the hypermodule can be used as any other hyperslice
in new hypermodules. This is similar to how composed subjects can take the place of subjects
in SOP composition.

MDSoC composition is based on SOP composition. It is a three step process [Tarr99]:

1. Matching: units inside concerns must be matched.

2. Reconciliation: any conflicts between units must be resolved.

3. Integration: the units must be transformed into a resulting unified unit.

[Harrison93] discusses different approaches of matching classes between subjects in SOP,
some are automated matching mechanisms. SOP, as defined in [Harrison93], only supports
the composition (and thus matching) of classes. In the light of MDSoC, we could consider
that classes are the primitive units of SOP as defined in [Harrison93]. [Ossher96] extends
SOP to support the matching of methods and variables. The MDSoC model allows matching
units at any level. The only restriction to matching in the MDSoC model is that the units
being matched must be of the same level (for example, methods match methods but not
classes). Hyper/J supports matching units down to the method level, giving Hyper/J the same
matching capabilities that [Ossher96] proposed for SOP. But, contrary to SOP, Hyper/J does
not support any kind of non-explicit unit matching. Nevertheless, MDSoC poses no detriment
to supporting non-explicit unit matching. Curiously, SOP does not provide any reconciliation
mechanisms and Hyper/J does not implement any for MDSoC either. The need for
reconciliation is identified in [Tarr99] but no instantiation is made in MDSoC literature.

8 Here, we consider dimensions that are automatically created in MDSoC, like the object dimension or the
artefact dimension, to be default dimensions. Similarly, the none concern can be considered a default concern.

29

Finally, regarding integration, [Harrison93] already provided some integration mechanisms
for SOP: namely merge and override integration. Override integration simply discards all the
units being composed but one, which is the resulting unit. Merge integration will create a
resulting unit that transparently uses all the units that were composed. Merge integration can
optionally compose a result value from the partial results of each composed unit. These two
integration mechanisms are implemented in Hyper/J, among others [Tarr01], and will be
focused in detail in Section 5.1.

[Ossher96] defines a formal model for SOP composition. As already stated, this model
extends SOP composition from classes to methods and variables, in terms of matching and
integration. Furthermore, [Ossher96] presents a rule model, already mentioned in Section 2.2.
In this model, composition clauses express the matching and integration of units (classes,
methods or variables) from different subjects. It would be possible to express all kinds of
compositions in SOP only with composition clauses. But, frequently, the composition of
classes, and sometimes entire subjects, uses the same composition clauses for all contained
units (for example, match by name, integrate by merging). For this purpose [Ossher96]
introduces composition rules that work as generators of composition clauses for units up to
the entire subject level. A composition rule takes the place of as many composition clauses as
there are matching units in the composed subjects. Composition clauses may still be used by
themselves for expressing exceptions to the composition rule. [Tarr99] presents composition
rules for MDSoC but does not define any lower level mechanism to express exceptions. A
mechanism equivalent to SOP composition clauses, MDSoC composition relationships, is
only defined in [Ossher99], within a formal model for MDSoC composition. The formal
model in [Ossher99] is not extended with [Tarr99]’s composition rules. But, Hyper/J
implements a model that is equivalent to the SOP model, mixing composition rules and
composition relationships. Hyper/J relies primarily on composition rules and composition
relationships can be used to express exceptions to composition rules. Each composition
relationship, be it generated by a composition rule or expressed explicitly, identifies a set of
units from the hyperspace (input units) and uses a composition function to transform these
units into an output.

3.2.3 SOP and the MDSoC hyperspace

SOP and MDSoC share many similarities that have been described above. Nevertheless, SOP
does not define any subject space like MDSoC defines the hyperspace for concerns. Even
more importantly, SOP is specific to the code artefact in the OOP formalism and Subject
Oriented Design is specific to the design artefact in the UML formalism. MDSoC defines a
much more powerful model that can be applied to any artefact formalism and where artefact
formalisms can coexist. Still the similarities are numerous, namely, the composition
mechanisms of SOP and MDSoC are almost equivalent.

Another difference between SOP and MDSoC is that MDSoC, when implemented for OOP
(like in Hyper/J), does not require any kind of binding object like SOP’s object identifiers
(oids). This is because MDSoC generates a composed result where a native entity (for
example, a class) corresponds to the composed units. The composed result provides the
operational “glue” that was provided by oids in SOP.

While supporting different overlapping class hierarchies between subjects, SOP introduced
the concept of flattening to avoid issues like the diamond problem and others. Flattening
removes all inheritance information from the result of composed subjects. MDSoC does not
propose any flattening mechanism and Hyper/J does not implement any either. Without

30

flattening, it would be interesting to know how MDSoC addresses the issues with multiple-
inheritance. [Ossher01] gives an example of the composition of two different overlapping
hierarchies. As the example is composed using Hyper/J, and Java does not support multiple-
inheritance, there should be some kind of mechanism to determine the resulting inheritance
hierarchy. Nevertheless, neither [Ossher01] nor the Hyper/J manual [Tarr01] provide any
information in this regard.

3.3 Using MDSoC: Examples

3.3.1 The Expression SEE example

Most of the MDSoC literature [Ossher99] [Tarr99] [Ossher00] [Tarr01] uses the same
example to show how MDSoC should be applied to OOP and identify some of its inherent
benefits. This example is presented as a Software Engineering Environment (SEE) with the
respective requirements, design and code artefacts. The aim of the example is to represent
expressions involving operations on variables and numbers. These expressions should then
support several different features, such as being printed, evaluated and having their syntax and
semantics checked.

Figure 3. Class hierarchy used in the Expression example.

At first, while presenting this example, MDSoC literature describes how it can be
implemented in OOP without using MDSoC. Each expression component is a class, creating a
class hierarchy with an Expression class as its root element (see Figure 3). For instance, there
is a Number class that derives directly from the Expression class. Minus and Plus operator
classes derive from a BinaryOperator class which then derives from Expression. Finally,
there is a UnaryOperator class, also deriving from Expression, which is extended by
UnaryMinus and UnaryPlus classes. This class hierarchy is common to [Ossher99], [Tarr99],
[Ossher00] and [Tarr01]. Only with operator classes and a number/literal class, it provides no

31

support for variables. Nevertheless, this support is implemented, using a Variable class, in the
demonstration code for this example that comes with Hyper/J9.

Each feature is then implemented using a different method that needs to exist in most, if not
all, of the defined classes. To evaluate expressions, an eval method, that returns the computed
value for the expression, can be used. Expressions can be printed out using a display method.
To check expressions there is also a check method that returns true if the expression is valid.

There is no clear separation for the implementation of each feature. This way, removing a
particular feature is not trivial. Introducing new features may require adding new methods to
existing classes, but might also be more complex. [Tarr99] proposes the introduction of a
persistence feature along with a style checker. Implementing persistence requires changing
the constructor and properties of the Expression class hierarchy objects so these write any
changes to their values to a persisted store. Applying design patterns to achieve a more
decomposed implementation of this feature is possible but suffers from drawbacks described
in Section 2.4.

The style checking feature, also proposed in [Osher00] and [Tarr01], could be implemented
using a new method. Still, [Tarr99] discusses how it would be possible to execute all the
checks (syntax, semantic and style) through a single method. To achieve this [Tarr99]
proposes the usage of a visitor design pattern for each kind of check. Like using design
patterns for the persistence feature, this also has some of the drawbacks already discussed in
Section 2.4. Eventually, a more adequate solution would be to implement a single check
method in the Expression class. This method could invoke the desired different check
methods and it would be a single point of change to obtain different combinations of the
different types of checking. As this method is inherited by all other classes, invoking it for a
particular class executes the different check types for that class. This solution is fully
supported by inheritance but was not addressed by [Tarr99] or the remaining MDSoC
literature which proposes a style check feature [Osher00] [Tarr01].

[Osher00] and [Tarr01] additionally propose the implementation of logging. This involves
writing relevant information like entering or leaving a particular method, its arguments and
return value. This non functional feature requires adding logging statements to all the methods
in all the classes. Alternatively, an observer design pattern can be used, but it requires the
introduction of notification invocations at the same points. This is yet another drawback of
using design patterns that was already presented in Section 2.4.

[Ossher99] proposes the introduction of a caching feature, to avoid having to re-evaluate the
same expressions. A cached result variable can be introduced. When a first evaluation occurs
this variable should be written. If an evaluation is requested and there is a cached result it
should be directly used. This behaviour has to be implemented in the eval method, mixing the
caching feature with the existing evaluation feature. Furthermore, like persistence, the caching
feature requires changing class properties and constructors to invalidate a cached result
whenever expression components are changed.

The elements of MDSoC literature presenting the Expression SEE example go on to present
how it is implemented using MDSoC and how this makes it much easier to extend with new
features. They define a hyperspace with two dimensions. The first is the Object dimension
and is already defined by the class hierarchy of the non MDSoC solution. Each class
corresponds to one concern in this dimension. The second dimension is the Features

9 A downloadable Hyper/J package that includes this example is available at
http://www.alphaworks.ibm.com/tech/hyperj/download.

32

dimension. It is populated by concerns pertaining to the different features like display and
evaluation. The Features dimension can be physically implemented or be created using virtual
decomposition. It can even contain both physically and virtually decomposed units.

[Tarr99] provides a physically decomposed model for the Features dimension. It uses only
units from the design artefact as it does not address the code artefact directly. So, [Tarr99]
presents class diagrams where the class hierarchy is replicated for each concern. The classes
in the diagram for a particular concern contain only the members that address that concern.
For instance, the classes in the Evaluation concern only contain the eval method whereas the
classes in the Display concern only contain the display method. In some concerns the class
hierarchy is not complete in regards to the original one because some classes are not relevant
for that concern. This happens in the Evaluation concern where there is no general evaluation
for unary or binary operators, so their children (Minus, Plus, UnaryMinus and UnaryPlus)
derive directly from Expression.

On the other hand, [Ossher00] and [Tarr01] focus on the code artefact and, using Hyper/J,
implement most of the concerns in the Features dimension virtually. This is done by
identifying the concerns to which the units belong. For instance, the eval methods in all the
classes belong to the Evaluation concern. Similarly the display methods belong to the Display
concern. These methods continue to exist in the original classes but are virtually mapped to
these concerns in the Features dimension. This allows using the original OOP code in an
MDSoC hyperspace, without changing it, but benefiting from MDSoC advantages as we will
see further on.

A third dimension, the artefact dimension, is explicitly addressed in [Ossher99]. Nevertheless,
it is natively present in all Expression SEE descriptions simply because they contain separate
requirements, design and code artefacts.

Figure 4. Representation of the MDSoC hyperspace used for the Expression SEE example.

Figure 4 represents the three dimensions used in the MDSoC hyperspace for the Expression
SEE. Each dimension is represented with its own colour and indexed by its own concerns. As
seen previously, this hyperspace is populated by code, design and requirement units using
either virtual or physical decomposition.

Back to the Features dimension, the Kernel concern is a common concern in many MDSoC
hyperspaces. It provides basic constructors, properties and variables for all the classes
involved. Other concerns may provide other constructors, properties and variables that are

Artefacts

Requirements

Design

Code

Objects

Expression

Number

BinaryOperator

Minus

Plus

UnaryOperator

UnaryMinus

UnaryPlus

K
e
rn

e
l

E
v
a
lu

a
ti
o
n

D
is

p
la

y

S
y
n
ta

x
 C

h
e
c
k

S
e
m

a
n
ti
c
 C

h
e
c
k

S
ty

le
 C

h
e
c
k

L
o
g
g
in

g

P
e
rs

is
te

n
c
e

C
a
c
h
in

g

Features

33

particular to those concerns. The Kernel concern is present in all of the versions of this
example in [Ossher99], [Tarr99], [Ossher00] and [Tarr01].

As for checking concerns, [Tarr99] separates syntactic from semantic checking in different
concerns, while [Ossher00] [Tarr01] has a single Check concern that addresses both types of
check. In this last case, the Check concern contains a check method for all the classes in the
hierarchy. In the case of [Tarr99], MDSoC composition is used to merge the check method
from each checking concern. The merge is done so that the resulting method only returns true
if both syntactic and semantic checks return true.

One of the advantages of MDSoC presented with this example is the ability to mix-and-match
different features creating different versions of the same application. For instance, with the
hyperspace defined in [Tarr99], it is possible to remove either syntactic or semantic checking
by removing the respective concern (which is a trivial task).

Adding style checking to this example is also trivial. Style checking introduces its own
concern in the Features dimension. The classes in this concern provide their own check
method. Then, MDSoC merge composition is used to compose this concern with the other
check concerns. In [Ossher00] and [Tarr01] this concern is implemented using a physical
decomposition. Physical decomposition is usually better as it allows the programmer to work
with decomposed code. The original feature concerns (Kernel, Evaluation, Display and
Check) were not physically decomposed in [Ossher00] and [Tarr01] to avoid having to
change the original OOP code, which was developed without MDSoC support.

The caching feature [Ossher99] is implemented in MDSoC as a separate concern. As
identified previously, the caching feature affects the eval method in all classes in the hierarchy
and also their constructors and properties. This means the Caching concern overlaps the
Kernel and Evaluation concerns in the Features dimension. It also overlaps all concerns in the
Object dimension. When this happens with a new concern, it should be introduced into a new
dimension. [Ossher99] proposes the introduction of a Caching dimension. We consider that a
more general Non-functional requirements dimension might be more adequate, being prone to
receive other related concerns. The Caching concern should contain constructors, properties
and an eval method for each class in the hierarchy. These members only need to update or
invalidate a local evaluation result variable. This Caching concern should then be used in a
hypermodule that defines how it is composed with the evaluation and Kernel concerns.
[Ossher99] does not provide any details about the composition of this concern. But, for
instance, the constructors and properties can simply be merged with the ones in the Kernel
concern. This concern was represented as part of the Features dimension in Figure 4 to avoid
representing a four dimensional hyperspace. Placing this concern in the Features dimension
may not be the most adequate approach but was followed for other non-functional
requirements (persistence and logging) in [Tarr99], [Osher00] and [Tarr01].

[Tarr99] also proposes the implementation of persistence as a separate concern. It does not
detail a particular solution for this feature, not even at design level. Yet, this concern is similar
to the Caching concern. It also overlaps the Kernel concern and, optionally10, others, which
provide state information that can be persisted, for instance, the check and even the
Evaluation concern. As such, this concern should also be implemented in a different
dimension. The Non-functional requirements dimension we proposed for the Caching concern
is a good candidate. All the class members that are used to change or compute state

10 It is discussable whether persisting state information that can be computed is a task for the persistence concern
or the caching concern. [Tarr99] seems to defend it is a task for the persistence concern by proposing that it also
persists the result of the check method.

34

information about expressions should be implemented in this concern. These members should
simply save the new state information without executing any other tasks, like initializing
variables or computing state information. Then, this concern should be introduced in a
hypermodule, defining an adequate composition with the kernel and other concerns.

The description of how to implement the logging feature with MDSoC [Osher00] [Tarr01] is
more detailed than the description of the previous features. A specific Logging concern is also
used. Logging method calls, with the respective entry and exit, affects the methods in all
existing concerns. This could mean that the logging feature overlaps all other concerns and
should be implemented in its own dimension. Nevertheless, in [Osher00] and [Tarr01], the
Features dimension is used for the Logging concern. It would be more adequate to create this
concern in the Non-functional requirements dimension.

The Logging concern is implemented using the observer design-pattern. A call to a method
entry handler is embedded into the beginning of existing method bodies. A similar call is
embedded into the end of the same method bodies. Embedding these method handler calls is
done using a new composition function implemented in Hyper/J: bracket. Bracket allows the
introduction of method invocations before and after other methods (for more details see
Subsection 5.1.2). The handlers simply write relevant method information to a log file. The
Logging concern should be used in hypermodules that define the composition of these
handlers with all the methods that need to be logged.

3.3.2 Other examples

[Ossher01] presents a different but similar example to the Expression SEE. The example
consists of an employee class hierarchy that provides functionality (methods) that address two
main features. The first is a personnel feature that keeps track of employee details. The second
is a payroll feature and is centred around a pay method. Additionally, each feature has related
business rules it needs to enforce. The example is implemented using MDSoC in a similar
way to the expression example. The two different requirement groups are implemented in
different concerns of a Features dimension. The Personnel concern is similar to the Kernel
concern in the expression example and contains constructors and properties for the employee
classes. Additionally, a Business Rules dimension contains concerns that implement particular
business rules, each in its own concern. This separates the business rules from the features
they are related to.

Both the expression and employee examples consist of a single class hierarchy where all the
classes share a common set of methods. Each method offers the functionality of a particular
feature or accumulates functionality from different features. Each method can also be affected
by non-functional requirements. It can be argued that these examples are too specific and, by
sharing the characteristics presented, do not capture a wide range of application types. For
instance, the examples do not capture applications containing several different class
hierarchies which are not interrelated by inheritance but by reference. Nevertheless, this does
not mean that different application types can not equally benefit from MDSoC. It only means
that different examples of using MDSoC should be studied to achieve a wider validation
ground for the benefits of MDSoC.

There are also real-world examples of MDSoC usage. One such example was the
implementation of the GNU sort application using Hyper/J [Carver02]. MDSoC has also been
applied to several fields in computing, namely web service composition [Hailpern01]
[Arsanjani03] and middleware [Rouvellou00]. As for other fields, it has been used in the

35

design of hardware embedded systems [Stuikys02], in music composition [Hill06], to cope
with the complexity of regulatory text bodies [Lasky03] and in sustainable architecture and
urban planning [Lourenci02]. [Lourenci02] provides a particularly interesting perspective on
MDSoC.

3.4 Conclusions

MDSoC is an evolution of SOP that has acknowledged the multiple dimensions in which
subjects (or concerns) can be organized. In MDSoC, these dimensions are supported by a
structure called hyperspace. Hyperspace is made-up of concerns that are contained in
dimensions. Concerns contain units from different software artefacts and/or formalisms. This
makes MDSoC a cross-artefact model. MDSoC is also based on two stages: decomposition
and composition. In the first stage, units are placed, physically or virtually, inside concerns of
the hyperspace. In the second, sets of units are matched and composed according to
composition rules and relationships. Like SOP, MDSoC adopts composition strategies defined
in composition rules and allows expressing as many exceptions to these as required.

Finally, we used the Expression SEE example to demonstrate a set of features that severely
benefit from being implemented using MDSoC.

36

37

Chapter 4

Technological background

This brief chapter presents an overview of the technological background required for the
chapters that follow. First, the Java programming language is very briefly addressed. This will
help readers not acquainted with Java cope with Section 5.1, about Hyper/J, which is an
MDSoC implementation for Java.

The core of this chapter is a slightly more detailed description of the Microsoft .NET
Framework and its languages. It then focuses on .NET partial types, which is an important
feature in regards to MDSoC, as Section 6.1 will show.

Hyper/Net, the MDSoC implementation developed to help support the thesis documented
herein, adds MDSoC support to Microsoft .NET languages. Hyper/Net was integrated with
two .NET Interactive Development Environments (IDEs), SharpDevelop and Microsoft
Visual Studio. These are also addressed here.

This background information on Microsoft .NET will also help with Section 5.2, on HyperC#.

4.1 The Java programming language

Java is an OOP language based on C and C++. Its first version (1.0) was released in 1995 by
Sun Microsystems. Java did not adopt most C and C++ low-level facilities, namely pointer
manipulation. With its minimalist design, Java also does not offer support for other common
OOP features, such as multiple-inheritance [WikiJa].

Java programs can use a set of common functionality from standardized Java libraries. These
provide access to system functionality like user interfaces, networking, etc. One interesting
point is that these libraries are equally available in all platforms that support Java programs.
In fact, Java programs are not compiled into native machine code but into an intermediate
language: Java bytecode. Java bytecode programs are usually compiled into native code at
runtime, as needed, by a Java Virtual Machine. There are Java Virtual Machines for almost all
platforms. This makes Java programs portable across platforms.

38

Java was originally closed source, but was freely available for use. As of May 2007, Sun
Microsystems publicly released Java’s compilers, virtual machine and other tools, officially
making Java an open-source, community project.

4.2 Microsoft .NET Framework

The first version of the .NET Framework was released in early 2002 [WikiNF]. It was
introduced with the intention of providing a common framework for Microsoft’s
programming language implementations.

An important part of the .NET Framework is its Base Class Library (BCL). It provides
common functionality in areas like data access, user interfaces and networking, among others.
Programs developed in any .NET language can use the BCL. In fact, it is available in the
same way from all .NET languages.

The .NET Framework also manages the execution of programs written for the framework.
This support is offered, usually at runtime, using virtual machine technology. The .NET
Framework includes a virtual machine that translates a .NET intermediate language (the
Common Intermediate Language – CIL) into the machine language of each platform (see
Figure 5). The resulting machine code is what ends up being executed. Like the Java Virtual
Machine, this provides independence from the architecture of each platform that .NET
programs run on.

Figure 5. Typical .NET compilation and runtime process.

Like Java, the .NET Framework also supports an intermediate byte-code language (the CIL)
using a virtual machine model. Also like Java, the .NET Framework offers a set of common
functionality through system libraries, like the Base Class Library (BCL) [WikiNF]. Yet, the
.NET Framework takes these advantages one step further than Java by supporting .NET in
multiple languages. Each .NET language needs only to have a CIL compiler that translates it
to the CIL. This is of crucial importance for the adoption of the framework. Any existing
language, in particular OOP languages, can be ported to a .NET variant. An immediate
advantage is having direct access to system functionality through the BCL, allowing language
implementers to concentrate on language features instead of system integration features. At
the time of writing, .NET supports more than 30 different programming languages, most of
which were developed by parties other than Microsoft [WikiNL]. In comparison to Java, the
.NET Framework falls short on portability, as Microsoft only offers an implementation for
Microsoft Windows platforms. There are open-source efforts (like Mono) to provide cross-
platform support for the .NET Framework, but .NET support is not complete, namely
supporting only part of the BCL [WikiNF].

The .NET Common Intermediate Language (CIL) is object oriented. It natively supports
features such as class inheritance and polymorphism [Thai03]. It also instantiates a particular
set of language entities from common OOP concepts:

SSoouurrccee
CCooddee

CCIILL
NNaattiivvee
CCooddee

CCoommppiilleerr JJIITT CCoommppiilleerr

CCoommppiillee ttiimmee RRuunnttiimmee

39

� Classes – can be considered the most important entity in the CIL. All other programming
elements must belong to classes, with the exception of interfaces.

� Interfaces – declare a set of member signatures (methods, properties, etc.) that must be
implemented by classes that derive from the interface.

� Methods – are the main implementation point for functionality. Methods must belong to
classes and can be declared in interfaces. A method is identified by its signature: its name;
set of parameters types and return value type.

� Fields – represent class member variables.

� Properties – are similar to fields but provide greater encapsulation by being accessed
through getter and setter methods.

� Events – provide a native implementation of a synchronous observer design-pattern.

� Namespaces – serve as a modularization tool, separating different types inside a CIL
module according to any desired criteria.

The CIL language entities are enhanced with another set of standardized language entities.
These are defined as part of the .NET Common Type System (CTS) and can be mapped to
CIL objects [Ecma02]. They are:

� Exceptions – which are particular classes (deriving from System.Exception) that can be
used when errors occur.

� Enumerations – which are special types that contain a set of named constants.

� Indexers – which are operators that allow accessing objects as if they were arrays.

� Delegates – which are a type-safe version of the function pointers from other languages,
like C. Delegates define a method signature type11 which can be used to declare invocable
variables. These variables can be associated with any methods with the appropriate
signature [Thai03].

� Attributes – which are particular classes (deriving from System.Attribute) that can be
applied to most language elements to provide metadata on them. Some attributes have a
specific semantic value for the CIL and are provided with the .NET BCL. Custom
attributes can be created by extending the System.Attribute class [Liberty01].

Exceptions are already class types at CTS level, and so should also be classes in .NET
languages. Enumerations and delegates are converted into class types for the CIL.

Delegates and exceptions are class types in the CIL. Nevertheless, the CIL validates delegates
according to particular rules and needs to provide native support for exception handling
[Ecma02]. Additional information about these particular types needs to be provided to the
CIL in the form of metadata. Attributes are also introduced into this body of metadata.

All .NET languages must implement the .NET Common Type System (CTS). It is noticeable
that the CIL and the CTS strongly influenced the design of the C# and VB.NET languages.

11 Here the method signature is defined without the method name.

40

The entities that exist in both languages are exactly the ones supported by the CTS. Each of
these .NET languages is focused in slightly more detail in the two following Subsections.

4.2.1 The C# programming language

C# is an OOP language developed by Microsoft and approved as a standard by the ECMA
and ISO organizations [WikiCS]. The first version of C# (C# 1.0) appeared in 2001, just
before the official release of the first version of the .NET Framework. C# is based on C++ but
also includes elements from Delphi and Java. The most relevant C# design goal is simplicity.
Like Java, C# was chosen not support multiple inheritance. C# implements a unified type
system rooted in the Object class. Unlike Java, in C#, primitive types, like integers, booleans
and so on, are also part of this type system by extending the Object class. The unified type
system is not particular to C# but is a consequence of the .NET Common Type System (CTS).

4.2.2 The VB.NET programming language

The Visual Basic .NET, or VB.NET, programming language is an evolution of Microsoft’s
Visual Basic to support the .NET Framework. Visual Basic is an event driven programming
language. It is used mainly for rapid application development (RAD) of user interfaces and
reusable components (COM objects) in the Windows platform [WikiVB]. VB.NET retained
part of the Visual Basic syntax and the event driven capabilities, using .NET Framework
delegates and events, but became a full-fledged OOP language equivalent to C#.

4.2.3 Partial Types

As part of a set of new language features, Microsoft introduced partial types with the C# and
VB.NET 2.0 language definitions in 2005 [CSharp05]. Partial types use a type modifier
(partial) that enables separating type definitions throughout as many files as desired. Listing 1
and Listing 2 exemplify the usage of partial types to implement two different methods (Eat
and Sleep) for the same class (Fish) in separate files. When the two listings are compiled,
there will be a single Fish class providing the two implemented methods, as if they had been
defined inside a single class in one file.

partial class Fish

{

 public void Eat(IEdible food) {…}

}

Listing 1. Declaration of the Fish partial class in the first file, using C#.

partial class Fish

{

 public void Sleep(int minutes) {…}

}

Listing 2. Declaration of the Fish partial class in the second file, using C#.

Partial types allow defining different members of the same type separately, eventually in
different files. The partial modifier can only be applied to classes, structs and interfaces. It is
not valid for delegates or enumerations [CSharp05].

41

Currently, the most common usage for this feature is separating tool-generated code from
human-generated code for the same class. By generating classes with a partial modifier,
members can manually be added to them in separate files. This enables each class to be
regenerated using the tool without overwriting the human-generated portion of the class
[CSharp05]. This is particularly useful when extending the tool-generated class is not a valid
option. [CSharp05] also proposes the usage of partial types to allow different programmers to
work on the same type separately.

[CSharp05] goes on to provide important implementation details that determine how partial
types can be used:

� The partial types for a particular type must all be defined under the same namespace. Two
partial types with the same name, defined in different namespaces, are defining different
types, each belonging to its respective namespace.

� All the parts of a type that uses partial types must be declared partial and must have the
same accessibility; for instance, all are public or all are private.

� If any of the partial types of a particular type is defined as abstract, the resulting type will
be abstract.

� Each partial class can extend another class. Still, all of the different partial classes, for a
particular class type, that extend a class, must extend the same class. If at least one partial
class extends another class, the resulting type will also extend that class.

� Partial types are composed into a type (by a .NET compiler) in an additive fashion:

o All the members defined in each partial type with exist in the resulting type.

o Any interfaces implemented by a partial class or extended by a partial interface
will also be implemented or extended by the resulting class or interface
(respectively).

o Any class attributes that are applied to a partial type will also be applied to the
resulting type.

o Any XML comments that applied to a partial type will also be applied to the
resulting type.

� All partial types of a particular type must belong to the same assembly and module.

Even though .NET, in particular the C# language, has adopted many of its language features
from Java, there is no equivalent to partial types in Java.

As we will see, from Chapter 6 onwards, partial types can be used to achieve separation of
concerns. Nevertheless, references about this usage for partial types are scarce. [Hirschfeld03]
briefly discusses how partial types are expressively more limited than Aspect Oriented
Programming (another composition approach) for addressing separation of concerns.

42

4.2.4 SharpDevelop

SharpDevelop is an Integrated Development Environment (IDE) for .NET. The task of an IDE
is to streamline the process of programming. By also offering support for related tasks like
designing, testing or documenting, IDEs tend to be the tool of choice for streamlining the
entire software development process.

The SharpDevelop IDE supports the two main .NET programming languages, C# and
VB.NET. It also supports the Boo programming language which is an OOP language based
on Python. SharpDevelop itself is developed using C# and runs on the .NET Runtime. It is an
open-source project and is free to use.

The first chapter of [Holm03] provides an overview of the SharpDevelop functionalities.
Some of that information is outdated and had to be reconciled with updated data from the
SharpDevelop website [SharpDevelop07].

SharpDevelop provides common source code editing features like search and replace and
syntax highlighting. Dynamically, while users are writing code, SharpDevelop provides code
completion suggestions based on the source code context. For instance, while starting to write
the name of a method invoked from a class, SharpDevelop provides a list of all methods in the
class that start with the characters already written. The programmer does not have to finish
writing the method name and can choose it from the list. Another SharpDevelop feature that is
related with code completion is called method insight. While the programmer writes the
invocation of a particular method, SharpDevelop provides information about the required
arguments, highlighting the current argument while it is typed. SharpDevelop also supports
integrated debugging. It allows breakpoints to be defined in the source code and uses them in
interactive debug sessions.

Another important concept managed by IDEs is the concept of programming projects.
Projects act as source code aggregators. They contain related source code files that should be
compiled together, along with other elements, like resources: images, localized text strings,
etc. Projects also simplify the source code build process, allowing an entire project to be built
with a single click. Any errors during the build process can be presented to the programmer
inside the IDE and he/she can navigate to their source. SharpDevelop fully supports several
different kinds of project files, namely the MSBuild project files used by Visual Studio, which
is the main, commercial, .NET IDE.

A particularly interesting feature of SharpDevelop is that it provides the possibility of
translating programs in any supported language into any other supported language. This
feature is supported by a parser that is part of NRefactory, which is addressed further on.

Another area where IDEs tend to provide solid support is on Rapid Application Development
(RAD) for interfaces. SharpDevelop provides visual tools to create Windows Forms and Web
Application (ASP.NET) interfaces.

Finally, SharpDevelop provides important extension and integration features that allow more
functionality to be plugged-in through separate modules. Such integration features are used to
plug-in external tools like, testing and code-coverage frameworks (NUnit and NCover) or
documentation tools (like NDoc). Several other plug-ins exist and many are under
development.

43

NRefactory

Despite the name, NRefactory is a C# and VB.NET source code parser. It is used internally by
SharpDevelop, mainly for source code translation. After parsing source code, NRefactory
allows the manipulation of its Abstract Syntax Tree (AST), providing a programming
interface for manipulating code [NRefactory05]. The contents of the AST can be converted
back into textual source code, in any of the two supported languages. NRefactory only
supports processing a single source code file at a time.

4.2.5 Microsoft Visual Studio

Microsoft Visual Studio is the first and best known IDE for the .NET Framework. It is a
commercial product developed by Microsoft and is closely related with the development of
the .NET Framework. Usually, the IDE support for new .NET Framework versions is
simultaneously made available in the form of new Visual Studio versions or updates.

Visual Studio heavily inspired SharpDevelop. Most of its features were based on similar ones
that are available in Visual Studio. Since its origins, Visual Studio offers Intellisense, which is
one of the first code completion features to be available in an IDE [WikiIS]. Visual Studio
2005 introduced its own test projects, offering unit testing facilities that are closely based on
NUnit. Another feature of Visual Studio 2005 is the Class Designer. It offers the ability to
create class diagrams from existing code or from scratch. The most interesting aspect of the
Class Designer is that class diagrams are dynamically synchronized with the source code.
Changes made in the class diagram take immediate effect in the source code and vice-versa
[Stoecker04]. This way, class diagrams not only serve to represent code, but provide a higher
level code interaction mechanism. We use Visual Studio generated class diagrams extensively
throughout this document.

Visual Studio has its own XML project format (MSBuild) and supports several different types
of projects. Each type of project is adequate for a particular architectural role. For instance,
there are ASP.NET web application projects that can expose user interface functionality
through a web interface and need to be supported by a web server. Windows forms projects
allow creating rich Windows client applications. Simpler project types are also supported.
Console application projects can be used to develop command line applications which offer
very limited used interaction facilities. Class library projects allow implementing software
modules offering functionality that can be used from other projects. Most medium to large
projects need to rely on several class library projects. Visual Studio project types are simply
templates that configure .NET projects and introduce sample code in a way that is appropriate
for each scenario. Most Visual Studio project types are similarly supported in SharpDevelop.

4.3 Conclusions

Java and the .NET Framework have a lot in common. Both are centred on OOP languages and
concepts, provide vast libraries for access to system functionality and implement a cross-
platform virtual machine environment. One .NET feature that does not exist in Java is .NET
partial types. .NET partial types allow scattering a class definition throughout as many
different files as required. Another important element in the adoption of both platforms is how
they are supported in IDEs that streamline the developers work. With a powerful set of

44

development support and guidance tools, IDEs tend to be used during the entire development
process. Some of these tools and features, like project files, code completion and testing tools,
will be revisited further on. We will also be revisiting NRefactory, which is a C# and VB.Net
source code parser.

45

Chapter 5

MDSoC implementations

The conceptual model of MDSoC is very promising as analysed in Chapter 3. Yet, without
implementations it would be nothing more than a model. This chapter presents two existing
MDSoC implementations that can be used by developers. Hyper/J is the first MDSoC
implementation and works with the Java language. HyperC# is a more recent project that can
be used with the C# language. Each section of this chapter focuses one of these
implementations. It presents their features, usage scenarios, bridges them to the MDSoC
model and summarizes their limitations. Another MDSoC implementation, developed by us,
is called Hyper/Net and is presented in Chapter 6.

As noted, the MDSoC implementations presented here only address the code artefact.
Curiously, there are many other MDSoC implementations and processes that address the
design artefact [Herrmann00] [Memmert02] [Philippow03] [France03], the architecture
artefact [Kande00] [Kande03] and the analysis artefact [Sutton02] [González05]. These are
not analysed here as our aim with this chapter is to provide comparison grounds for
Hyper/Net, which does not address design or analysis artefacts. A comparison between the
three MDSoC implementations for the code artefact (Hyper/J, HyperC# and Hyper/Net) is
done in Section 9.2.

5.1 Hyper/J

Hyper/J instantiates the MDSoC model for the Java language. It is the first implementation of
MDSoC and was developed by the authors of the MDSoC model [Tarr01]. Hyper/J works
with Java class files as input and also outputs Java class files [Ossher00]. It is a post-
compilation, pre-runtime composition tool.

Along with input class files, Hyper/J uses three different metadata files [Ossher00] [Tarr01].
One of the files defines which units from input class files are used in hyperspace (project
specification). Another defines dimensions and their concerns, and how the units in
hyperspace populate these concerns (concern mapping). Finally, hypermodules are also
defined in their own files. Hypermodule files identify the set of concerns/hyperslices used and
how these are composed using composition rules. Once created, these metadata files can be
reused in new compositions. For instance, to create a different hypermodule for the same

46

hyperspace, the project specification and concern mapping files can be reused with a new
hypermodule file.

Java developers may or may not have in mind that their code will be used in a particular
hyperspace. Hyper/J supports both scenarios. Furthermore, it can even be used when there is
no source code available at all, as it works directly with class files. In all situations, Hyper/J
requires no intrusive changes to existing code to place it in a hyperspace and then use it in
compositions [Ossher00].

Hyper/J uses the hyperspace definition along with a hypermodule to create output class files.
These output class files are the result of Hyper/J composition and can be reused in new
compositions or, if complete, as a running program.

Hyper/J implements MDSoC limited to a single artefact (code) and a single formalism of this
artefact: the Java language.

Packages, interfaces, classes, their members (like methods and fields) and statements are Java
language units. Hyper/J offers composition constructs for all of these units except for
statements [Tarr01]. Decomposing class members into statements is pointless as Hyper/J
offers no means to compose the resulting statements into class members again. Yet, class
members can usually be decomposed into sets of equivalent, usually smaller, class members.
For instance, a method can be decomposed into methods with the same signature, each
holding only part of the original method body. Contrary to decomposition into statements,
decomposition into equivalent class member types is useful, as Hyper/J offers composition
constructs for class members. This way, class members are the smallest decomposable units
but, at the same time, also primitive units of a Hyper/J hyperspace. Class members are
primitive units because they are the smallest units resulting from decompositions for use with
Hyper/J. This makes packages, interfaces and classes compound units.

Class members in this approach can be seen as a particular case of a wider scenario where the
decomposition of a unit always results in a unit of the same type. If this kind of unit is not
further decomposable into smaller granularity units, it will still be considered a primitive unit,
even though it is decomposable. This can be considered as an exception to the definition of
primitive units from Section 3.2.

5.1.1 Dimensions, concerns and hyperslices

Through the project specification file, Hyper/J allows the declaration of all the units that are
included in each hyperspace [Tarr01] (Subsection 4.2.1). These files contain directives which
identify specific classes or interfaces. Some directives identify single classes or interfaces.
Others are more powerful and allow the inclusion of the entire set of classes and interfaces
inside a package or a file-system directory. Pattern matching can be used to filter the included
units. In Hyper/J, not all classes and interfaces included in a hyperspace are composable. The
directives in the project specification file also allow defining which classes and interfaces are
composable and which are not. Any classes that are referenced by classes introduced into
hyperspace are automatically introduced into hyperspace by Hyper/J. Yet, these are defined as
not composable by default. If required, introducing these referenced classes explicitly allows
them to be composable.

Compound units other than packages must be introduced whole into hyperspace. Primitive
units can only be introduced into hyperspace as part of a compound unit. For instance, a class

47

member cannot be introduced into hyperspace by itself. Its entire containing compound unit
(the class) must be introduced. It is not possible to define that part of a compound unit cannot
be used for composition while the remaining can. To introduce a particular compound unit
member without introducing the remaining members of the unit, it must be decomposed
before being introduced into hyperspace. A new compound unit should be created with only
the members that are to be introduced into hyperspace. Of course this decomposition is
subject to the completeness constraints that allow the compilation of the compound units
involved. This issue is further discussed ahead in this section.

After units are introduced into hyperspace they must be matched to the adequate concerns.
Hyper/J uses the concern mapping file to declare hyperspace dimensions with concerns and
match units to these concerns [Tarr01] (Subsection 4.2.2). Hyper/J implements the most
limited hyperslice model where hyperslices are equivalent to concerns. This model was
proposed in [Tarr99]. As we will see, this is also the model used in the other MDSoC
implementations (HyperC#, see Section 5.2, and Hyper/Net, see Chapter 6).

Hyper/J automatically creates a Class File dimension from the set of units introduced into
hyperspace using the project specification. Each class introduced into hyperspace has its
respective concern in this dimension. Each respective hyperslice is populated by the
appropriate class and its members. The Class File dimension allows the visualization of
hyperspace from the classic perspective of OOP.

Concern mapping files are used to describe how the units that were previously introduced into
hyperspace are mapped to concerns. This populates the corresponding hyperslices. Different
types of units can be mapped to concerns. In fact, all kinds of compound and primitive units
in Hyper/J hyperspaces can be mapped. Each mapping is declared by identifying a unit and its
target concern (in a particular dimension). The order of declaration is important. A unit that
has already been mapped to a concern can be declared in other mappings. If these declarations
map the unit to concerns in the same dimension of previous declarations, the previous
mappings are dropped and this new one is introduced. Otherwise, the unit is mapped to all
other declared concerns, given they do not have any dimensions in common. This way, units
can be mapped to more than one concern but cannot be mapped to different concerns in the
same dimension. There can be mapping declarations for units that are contained in compound
units that were already mapped themselves. In such cases, the units contained in compound
units are only mapped to the concern of their specific declaration. This overrides the mapping
imposed by their containing compound unit. It allows units contained in compound units to be
mapped to concerns different from the one the compound unit is mapped to.

There is no explicit declaration for concerns and dimensions. Concerns are implicitly declared
as the target of unit mappings. That is, if a new mapping references a non-existing concern, it
is created. Furthermore, if the dimension of a new concern does not exist, it is also created.
The model for MDSoC dimensions defined in the beginning of Section 3.2.1 determines that
each dimension must contain all units. To achieve this, Hyper/J automatically creates None
concerns in each dimension and populates them with the units that are not mapped to any
concerns in the dimension. It is also possible to explicitly introduce units into None concerns.

In terms of the hyperslice implementation approach, as described in Subsection 3.2.1, Hyper/J
supports all three hyperslice implementation approaches. Code can be physically decomposed
by the developer before being introduced into hyperspace. It can also be used without any
decomposition at the code level, by mapping units to the appropriate concerns. The hybrid
approach is thus possible by mixing the two approaches. This is expected to be the most
frequent approach. With it, all physically decomposable units can be decomposed in the
source code. Yet, any units that are not physically decomposable can be mapped to more than

48

one concern in hyperspace. [Tarr01] proposes that physical decomposition should be done
whenever possible.

Physical decomposition will bring severe advantages for developers, who will be able to
manipulate decomposed code organized into concerns. Nevertheless, there may be some
disadvantages of prioritizing physical decomposition. Units of code that is physically
decomposed can still be used in different hyperspaces. If the dimensions of those hyperspaces
are severely different from the dimensions used to decompose the original code, mapping
might be difficult. Furthermore, hyperspace organization may change. A physical
decomposition approach is harder to adapt to these changes than a virtual mapping approach.
Nevertheless, these disadvantages are not significant when compared with the great advantage
of having developers manipulating units as they are organized in hyperspace.

Hyper/J does not implement physical decomposition by itself, but it can rely on OOP
decomposition to achieve this physical implementation. [Tarr01] (Subsection 4.3.1) proposes
and promotes the use of a particular physical implementation for hyperslices: “Hyperslice
Packages”. In this implementation, each hyperslice will have a corresponding package in the
code. As these packages (hyperslices) must be compiled prior to composition using Hyper/J,
the Java compiler imposes a completeness constraint for each package. The units referenced
from each hyperslice package must exist in the compiled code. Units outside of the hyperslice
package can be referenced from other packages that offer them. [Tarr01] advises against this
approach and proposes that each hyperslice package should instead be declaratively complete.
The declarative completeness of each hyperslice package guarantees that it will compile
without problems even if compiled without any other packages. Thus, declarative
completeness achieves the requirements of the completeness constraint imposed by Java
compilation.

[Tarr01] (Subsection 4.3.2) presents a process for achieving declarative completeness. It can
be used in a physical decomposition model with hyperslice packages or in a virtual
decomposition model, by matching the appropriate units to each concern/hyperslice.
Declarative completeness in a hyperslice is achieved by introducing declarations for all units
that are referenced and do not belong to the hyperslice. These declarations can be introduced
as abstract units, which limits their use, or, in the case of operations, as operations that throw
a predefined Hyper/J (unimplemented) exception. [Tarr01] does not present a way of
introducing field declarations and Java does not offer abstract field declaration.

5.1.2 Hypermodules

Finally, Hyper/J uses a hypermodule specification file to define composition and achieve
composed output [Tarr01] (Subsection 4.2.3). Each hypermodule specification file identifies
the set of hyperslices used for composition, along with a composition strategy and other
adequate relationships. Hyperslices are explicitly identified by name. Nevertheless, the
identification of hyperslices in each hypermodule declaration file is optional. When this
identification is not done, the hypermodule will contain all hyperslices in hyperspace, except
for the hyperslices of None concerns and hyperslices in the Class File dimension.

Hyper/J offers three different composition strategies: mergeByName,
nonCorrespondingMerge and overrideByName. Each composition strategy defines a different
composition rule with its own combination of composition function and different way to
match input units. Each composition strategy is detailed further on. Only one composition

49

strategy is allowed per hypermodule, so each hypermodule only has a composition rule.
Hypermodules may include as many exception composition relationships as required.

Hyper/J composition strategies can match units in two different ways: ByName and None.
With None, no units are matched and composition relies only on exception composition
relationships. Each unit in the input hyperslices is simply output on its own, unless it is part of
an exception composition relationship. With ByName, units are matched with units of the
same unit type (classes with classes, interfaces with interfaces, and so on) that have the same
name. If the direct container of a compound unit is a package, this compound unit is matched
(by name and unit type) without regard to its containing package12. As for the remaining
units, they are only matched if their containing compound units match or are the same. Yet,
this matching function is not recursive. Composition functions are in charge of further
matching units inside matched compound units.

The three composition strategies use two different composition functions: Merge and
Override. Merge can be applied to sets of compound units of the same unit type. In this case it
generates a single compound unit of that unit type containing the union of all units contained
by the input compound units, except for any units which also match. These contained units
that match are merged and the result is output to the generated compound unit. For example,
two matching classes (Fish1 and Fish2), each containing a Breath method, will be merged
into a single class with a Breath method, that results from merging the two Breath methods. If
Fish1 has a Swim method and Fish2 does not, the resulting class will have the Swim method
from Fish1.

Merge can also be directly applied to primitive units. In the case of methods it generates a
method that is equivalent to calling all of the matching input methods. The return value of
each input method is also merged. By default the merged method returns the return value that
would be obtained by invoking the last input method. It is also possible to define that a
particular Merge composition function uses a summary function to compute the merged return
value. In this case the return of the merged method is computed from each return of the input
methods using the desired summary function. Hyper/J only allows declaring a summary
function when Merge is used as the composition function of exception composition
relationships and not as part of the composition strategy. These summary functions must be
static and exist in the result of composition.

The order of the input units provided to composition functions is important. In the case of
Merge, this order determines the order by which input methods are invoked in the resulting
composed method. The order of input units is equivalent to the order of declaration of their
containing hyperslices in the hypermodule. Between two units, the one that will come first is
the one that belongs to the hyperslice which was declared first in the hypermodule. This order
is only changed by the Order construct, introduced in hypermodule declarations as a specific
relationship. The Order construct dictates explicitly that a particular unit precedes another,
overriding any order obtained from the corresponding hyperslice declaration order.

The Override composition function for compound units is equivalent to Merge. It is also
recursive and has its distinguishing result only when applied to primitive units (directly or by
recursion from compound units). In such case, the Override composition function outputs
only the last primitive unit from the tuple of input units. As such, ordering is even more
critical for override composition.

12 If this did not happen, no matching would be achieved. Java compilation already matches packages with the
same name. Furthermore, it does not allow the declaration of units of the same unit type with the same name
inside the same package.

50

Each composition strategy provided by Hyper/J implements a different composition rule with
a different set of matching and composition functions:

� mergeByName uses the Merge composition function and the ByName matching function.

� nonCorrespondingMerge uses the Merge composition function and the None matching
function. This is equivalent to defining no composition rule and that the default function
used in exception composition relationships is Merge.

� overrideByName uses the Override composition function and the ByName matching
function.

Each hypermodule only defines one composition rule but can define as many exception
composition relationships as required. All types of units, except for packages, can be involved
in exception composition relationships. In Hyper/J, entire hyperslice composition is only
achieved using composition strategies. Exception composition relationships provide a smaller
granularity composition mechanism at class level and below. The input units of each
exception composition relationship must be units of the same unit type. Their order follows
the same rule used with composition rules, that is, the order of hyperslices with exceptions
introduced by the Order construct. Different kinds of exception composition relationships can
be expressed using a set of Hyper/J relationship constructs:

� Equate is used to match units that are not matched by the composition strategy. The input
units are explicitly identified. The composition function used is the one defined by the
hypermodule composition strategy.

� Match is equivalent to Equate but allows units to be identified using pattern matching,
instead of needing to be identified explicitly. This way, with match, the input units depend
on the units present in the hypermodule’s hyperslices that match the specified pattern. The
remaining behaviour is the same as for equate.

� Merge imposes a Merge composition function to a set of explicitly identified input units.

� Override imposes an Override composition function to a set of explicitly identified input
units.

� NoMerge imposes an equality composition function13 to a set of explicitly identified input
units. This way, NoMerge can be used to avoid applying the hypermodule composition
function (Override or Merge) to a set of matching units. NoMerge has no effect in
hypermodules that use a nonCorrespondingMerge strategy.

� Bracket introduces a new composition function, also called Bracket. Bracket changes a set
of methods to additionally call a before method, before running their body, and call an
after method, at the end of their execution. The input units are the methods that should be
bracketed along with the before and after methods. The methods that should be bracketed
are identified using pattern matching. Additionally, Hyper/J allows specifying that these
methods are only bracketed when called from a specific context: a call-site. Only one call-
site is allowed but it can be anything, from a hyperslice to another method. The Bracket
composition function is limited to method unit types.

13 The output unit of an equality composition function contains all of the units in the input tuple, and only these.
An equality composition function can be recursively applied to a set of units time and again without ever
changing them.

51

5.1.3 Usage and reuse

Due to its characteristics, Hyper/J allows heterogeneous usage scenarios, namely:

� Being used to decompose existing code (though the decomposed form cannot be output as
code).

� Introduce new features, developed in a decomposed form, into existing indecomposed
code.

� Use compiled Java programs to compose with custom code, or even composing amongst
themselves.

� Creating different flavours of an application by removing specific concerns and
introducing new ones (mix-and-match functionality).

Furthermore, one of the aims of MDSoC is to promote reuse. Hyper/J satisfies this
requirement by allowing both hyperslice and hypermodule reuse. Hyperslices can be used in
any hypermodule created for the hyperspace they populate. Hyperslices can also be reused in
different hyperspaces. In this case it is best to have physically decomposed hyperslices,
namely, using the hyperslice package approach. Otherwise, introducing the hyperslice into the
new hyperspace will require identifying the physical units of the hyperslice again and
matching only these to the hyperslice in the new hyperspace.

Hypermodule reuse is achieved by introducing the output of a hypermodule into a hyperspace.
This must be done explicitly. Furthermore, as hypermodules output compiled class files, there
is no way to physically decompose this for usage in hyperspace. Hypermodule output
decomposition must be done virtually. Even if physically decomposing hypermodule output
was possible it would not be adequate. To cope with changes to the hypermodules, their
output units can be easily regenerated. Reintroducing them into the hyperspaces where they
are used should not require any manual intervention, namely having to do or adapt a physical
decomposition. Finally, it is discussable if any hypermodule output decomposition should be
done at all. Hypermodules can be reused in hyperspaces and be involved in compositions at a
higher level of abstraction than that of the input units of the hypermodule. In many of these
cases each hypermodule will correspond to a specific concern and may be used just like a
hyperslice, thus, no decomposition needs to be done.

5.1.4 Limitations

Hyper/J allows all the previously presented development scenarios and more. It also provides
interesting reuse scenarios. Nevertheless, there are some limitations to how Hyper/J
implements the MDSoC model:

� First of all, Hyper/J is limited to the code artefact in a single formalism (the Java
language). MDSoC design and analysis implementations should be used together with
Hyper/J to provide adequate traceability between artefacts.

� When using physical decomposition of code, the automatic Class File dimension created
by Hyper/J will be useless. Recall that with physical decomposition, the problem domain
classes are decomposed into several different classes according to different dimensions of
decomposition. This is an effect already discussed in Section 2.4, where the dominant
decomposition is compromised. In this case, the Class File dimension should be explicitly

52

declared (as any other dimension can be created using Hyper/J). This would recreate the
lost object dimension.

� Finally, code must compile before Hyper/J is used. This might introduce limitations to the
usage of Hyper/J, yet, it usually does not. In case virtual decomposition is used, code can
be created in a standard fashion, thus compilation is not a problem. Otherwise, if physical
decomposition is used, hyperslice declarative completeness usually satisfies the compiler
requirements.

[Tarr01] (Section 4.5) presents other, technical, limitations of Hyper/J. We summarize the
effects of these technical limitations, especially in regards to the MDSoC model:

� The nonCorrespondingMerge strategy does not work. This means that hypermodules will
always compose units, matched by name, using either an Override or Merge composition
function. There may be need for a hypermodule that only composes units with exception
composition relationships. Without nonCorrespondingMerge, to achieve such a
hypermodule, all unwanted matching units should be overridden with a NoMerge
construct.

� Merge and Override constructs are not available for exception composition relationships.
This way, exception composition relationships are limited to using the default
composition function defined by the composition strategy or the Bracket composition
function.

� Other constructs (like NoMerge and Order) are limited to specific types of units. This
limits the expressiveness of composition.

� Pattern matching also has some limitations. For instance, the pattern matching used in
mapping units to concerns does not allow recursion when applied to packages. Most of the
limitations with pattern matching are easily overcome, by writing more detailed
relationships.

� All output units, except for fields, are declared public, independently of their visibility
modifier in their origin hyperslices. This is fruit of an additional transformation of
composition with Hyper/J. This transformation is unwanted in regards to the MDSoC
model and should be removed from Hyper/J.

� All output units will belong to the same package. This is irrelevant if the units in
hyperspace are physically decomposed using hyperslice packages. Yet, in complex
systems it might be useful to output several different packages. This would for example,
facilitate hypermodule reuse. The MDSoC implementation that is presented next
(HyperC#) has a similar limitation, but at a much more serious level: it can only output a
single class unit.

[Tarr01] does not identify any origins for these limitations other than technical ones. This
way, these issues should be overcome by corrections to the Hyper/J implementation. Then,
the full power of a versatile and reusable MDSoC implementation for Java would be
unleashed.

53

5.2 HyperC#

HyperC# [Hantelmann06] is an MDSoC implementation for the C# language. Even though
HyperC# is implemented as a pre-compilation process, it relies on a graphical user interface
(GUI) for the manipulation of code and the definition of composition. This GUI must be used
to create C# classes that can be composed. The same GUI supports the definition of an
MDSoC hyperspace with dimensions and concerns. Finally, the GUI is also used to define
hypermodules and obtain their output.

In the class definition stage, the only purpose of this GUI is to gather meta-data about the
code, avoiding the need to use a code parser. The gathered meta-data is stored in an XML file
that should always accompany the original class file while HyperC# is used. For hyperspace
definition, the GUI allows the declaration of dimensions and their respective concerns in a
visual form. Then, the GUI allows the loading of classes that have the respective XML meta-
data file. Methods and constructors in these classes can then be placed inside the appropriate
concerns of each dimension. This way, HyperC# allows the decomposition of class units
while populating the hyperspace defined in the step before. The definition of hyperspace
achieved this way can also be saved to a XML file. Next, the same GUI is used to define
composition, in the form of hypermodules. First, a default composition action is defined. This
determines the composition rule used for the hypermodule. Additionally, it is possible to
define, at most, two exception composition relationships for the methods being composed.
Finally, the GUI allows the generation of composed output code, which is limited to a single
class, and its compilation.

While defining the hypermodule, alternatively to defining a composition action, the GUI
allows choosing that no composition will be done. In this case, the output is the decomposed
code, according to the concern mapping done in the prior stage. This can be used to obtain
physically decomposed code for existing classes.

HyperC# is an MDSoC approach that is limited to the code artefact and a single formalism:
the C# language. It offers a set of composition constructs for methods, but only fixed class
composition. This way, methods can be created and introduced into hyperspace in a
decomposed form. Latter, they can be composed into a single method again, although there
are several other composition alternatives. Due to this liberty, methods can be considered
primitive units in HyperC#.

5.2.1 Dimensions, concerns and hyperslices

Like Hyper/J, HyperC# does not offer a physical implementation of hyperspace for
programmers to develop in. The GUI allows the matching of developed methods to concerns.
Unlike Hyper/J, HyperC# only allows the matching of method units to concerns. The
mechanism used to achieve this decomposition seems to implement a virtual decomposition
approach (the second approach in Subsection 3.2.1). Nevertheless it implements this kind of
decomposition on top of a physical implementation. This limits the virtual decomposition
approach and removes some of its advantages. Namely, the same method cannot be mapped
to more than one concern, even in different dimensions. This forces methods that overlap
different concerns to be physically decomposed prior to being introduced into hyperspace.
Contrary to HyperC#, and according to the MDSoC model, Hyper/J allows matching the same
unit to different concerns in different dimensions. This is a powerful aspect of the virtual
decomposition approach that is missing in HyperC#. It is this way that Hyper/J provides
support for indecomposable units belonging to more than one concern.

54

In HyperC#, the physical hyperslice implementation code can be obtained by skipping
composition, after all necessary class methods are matched to concerns. In the decomposed
code, for each class that was used in decomposition (origin class) there will be a
corresponding class (concern class) in each concern that has methods from the origin class. At
most, there are as many decomposed classes as origin classes times the number of concerns. If
the original inheritance information is retained in this decomposed form, HyperC# is able to
retain the physical object dimension in its hyperspaces. Nevertheless, [Hantelmann06] does
not provide information on whether inheritance is kept or lost in hyperslices.

With its decomposition model and the feature for physical output of decomposed code,
HyperC# decomposition can be used in three different ways:

� Classes and their units can be created decomposed according to the hyperspace that will
be created with HyperC#. When the hyperspace is defined, they can be introduced into it
in this decomposed form. This way, the code will be manipulated in its decomposed form,
with the inherent advantages.

� Non-decomposed code can be loaded, after the hyperspace dimensions and concerns are
defined, using HyperC# to decompose it. This provides aid in decomposing existing code.
The existing code can still be manipulated in that form and used in different hyperspace
definitions. This has the disadvantage of always needing to decompose the code while
defining hyperspaces. Yet it can be differently decomposed for each hyperspace.

� Finally, the result of decomposing existing code with HyperC# can be materialized into
decomposed code using the appropriate HyperC# output feature. This code can then be
manipulated in its decomposed form like in the first approach.

HyperC# also introduces in each concern class the global declarations of the origin class. This
partially addresses the declarative completeness requirements of hyperslices (concern
classes). [Hantelmann06] is not clear regarding which global declarations are involved.
Nevertheless, these will not include method declarations, as [Hantelmann06] proposes a
different approach for declaring referenced methods. Methods that are referenced from
concerns in a dimension, and do not belong to the dimension, should be included in the None
concern of that dimension. This will not be possible with HyperC# due to the limitation that a
method can only be put inside one concern. The remaining referenced methods can be
introduced into None concerns without problems, as they are not present elsewhere in
hyperspace. Nevertheless, this approach for methods does not provide declarative
completeness of hyperslices but of the result of composition, that is, of the hypermodule
output set.

To appropriately achieve hyperslice declarative completeness with methods, the first HyperC#
decomposition usage scenario from the three presented above should be used. Declarations for
referenced methods should be introduced in the appropriate physically decomposed classes.
That is, the classes that correspond to the concerns that reference the method. When class
methods are matched to the respective concerns all of the referenced methods will be present
in that concern. Finally, composition should use the override construct to impose the
implementation of the method over its declarations. The limited composition model of
HyperC# will not support declaratively complete hyperslices in most hypermodules, except
for ones that use an OverrideByName composition action. This happens because HyperC#
only allows using override composition if the OverrideByName composition action is chosen
for the hypermodule.

55

5.2.2 Hypermodules

Hypermodules can be created for each hyperspace defined with HyperC#. In HyperC#
hypermodules, the set of hyperslices is always equal to the set of hyperslices in hyperspace.
Nevertheless, it is possible to create a hypermodule with a subset of the hyperslices of a
particular hyperspace. The original hyperspace should be edited, removing unwanted
hyperslices and saved as a new temporary hyperspace. This hyperspace should then be used to
create a hypermodule which will only have the appropriate hyperslices.

Like Hyper/J, HyperC# offers three different composition strategies: MergeByName,
NonCorrespondingMerge and OverrideByName. As for composition functions, HyperC#
offers the same ones as Hyper/J: merge, override and bracket. HyperC# supports a single
composition strategy for each hypermodule. It also supports exception composition
relationships. The HyperC# GUI allows the creation of at most two exception composition
relationships per hypermodule. One can use a bracket composition function, defining as input
units the method to be bracketed along with before and after methods. The other exception
composition relationship is called equate. Equate simply uses the composition function
defined by the composition strategy (either override or merge). It defines as input units
explicitly identified methods (using the GUI), which must have the same signature. Both
exception composition relationships are optional.

HyperC# allows the creation of different hypermodules for the same hyperspace definition.
This way, hyperslices can be used in different compositions, providing hyperslice reuse.
Hypermodule reuse is also possible, by introducing the output of a hypermodule in a new
hyperspace. The only limitation to hypermodule reuse is that their output will be a single class
(in source code form). This will require creating a different hypermodule for each desired
output class and reusing these classes one by one.

5.2.3 Limitations

HyperC# may be an interesting MDSoC implementation for .NET but it has serious
limitations that may affect its usability in real-world applications:

� HyperC# needs to use a specific GUI to offer MDSoC support. This might be acceptable
for hypermodule declarations, but not for creating classes. If HyperC# used a parser on
existing source code files, it could generate the same XML metadata it gathers from the
class creation GUI, allowing the use of existing software for creating code.

� The object dimension is lost with HyperC# composition. Using a different hypermodule
for each desired output class overcomes this limitation. Still, this work-around will be
impracticable in applications with more than a few output classes.

� More generally, this approach is limited to manipulating (decomposing and composing)
methods. There should be decomposition and composition constructs for other units,
namely classes, interfaces, variables and properties.

� Aside from the bracket composition function, it is only possible to define exception
composition relationships with the composition function defined in the composition rule
(using the equate construct). It should be possible to define override and merge exception
composition relationships independently of the composition rule being used.

56

� As for exception composition relationships, each hypermodule is limited to one equate
and one bracket. Any number of exception composition relationships should be allowed.

� Finally, the merge composition implementation creates a new method concatenating the
bodies of each matched method. The resulting method shares the same scope for all the
concatenated method bodies. Because of this, programmers must be aware of the
composition used with their methods and avoid using the same variable names, etc. This is
usually impracticable. As stated previously, this limitation should be overcome by
introducing separate scopes for each merged method body.

5.3 Conclusions

Both Hyper/J and HyperC# are limited to applying MDSoC to code in a single language (Java
or C#). Hyper/J works with compiled Java class files, while HyperC# works with source code.
Both promote the reusability of hyperspace elements. Defining composition with both
approaches has a similar basis: using a composition strategy per hypermodule along with
exception composition relationships. Yet, the possibilities are much more limited in HyperC#,
which only supports two exception composition relationships and uses fixed class matching to
output a single class. Finally, HyperC# forces developers to work in a specific GUI that is
very limited while Hyper/J allows developers to remain using their development environment.

57

Chapter 6

Hyper/Net: An MDSoC solution for .NET

languages

Hyper/Net is a pre-compilation compositor or weaver for an MDSoC hyperspace created with
.NET code. This means Hyper/Net processes .NET code that is in a decomposed form. It uses
it to generate code that can be compiled using a normal .NET compiler. Hyper/Net was
developed as part of the material support of the thesis presented herein.

Hyper/Net is based on the fact that .NET code decomposition can be achieved using a native
feature of .NET languages: partial types. Decomposition using partial types alone is enough to
implement a basic MDSoC hyperspace. Partial types are able to offer decomposition and
composition facilities at the granularity of classes.

This chapter provides a presentation of the Hyper/Net MDSoC approach, bridging it to the
MDSoC model presented in Chapter 3. The first section presents how we used .NET partial
types to create a basic MDSoC hyperspace model. Advantages and limitations of this model
are analysed. The MDSoC model is used to show how the hyperspace created with partial
types is in fact an MDSoC hyperspace. The second section presents how Hyper/Net’s
composition functionalities are used to extend this model, which limitations are overcome and
which remain.

This chapter is closely related to the two that follow it. Chapter 7 will present how Hyper/Net
can be used by programmers, how it is integrated with IDEs and also two implementation
examples using Hyper/Net. Finally, Chapter 8 will present the details about the Hyper/Net
MDSoC composition process and the Hyper/Net implementation.

6.1 The Partial Types MDSoC approach

Sections 5.1 and 5.2 present two MDSoC implementations. Both are extensions to an OOP
language and introduce constructs for both the decomposition and composition stages of
MDSoC. This section shows how .NET partial types can be used as an MDSoC
implementation. As partial types are a native feature of .NET 2.0 languages, this is the first
native MDSoC implementation, at least to be acknowledged as such.

58

.NET languages are mostly object oriented, though there is a tendency to some becoming
heavily multi-paradigm14. The following model uses partial types as a secondary
decomposition mechanism that complements the dominant object decomposition in these
languages. The additional decomposition with partial types will allow the creation of a multi-
dimensional concern space.

Partial types allow the separation of a type (class or interface) between several different files,
with a partial type (class/interface15) for each file. If there is a directory for each concern at
hand, then, types can be separated according to these concerns. The respective partial type
files can be placed under the directory for the appropriate concern. This way, programmers
will be able to work separately in each concern by working on files in the respective directory.
Nevertheless, concerns do not exist isolated, they will belong to dimensions. Dimensions can
just as well be implemented as directories. Each concern belongs to one dimension. The
directory for a concern will exist inside the directory of the dimension it belongs to. This way,
with a two level directory structure, populated by partial types at the second level (the concern
level), it is possible to create an MDSoC hyperspace in all .NET 2.0 languages. In this
hyperspace, .NET compilation is in charge of composition by merging the partial classes of
each class type into a single class. Figure 6 provides an example of such an MDSoC
hyperspace directory structure with two dimensions, holding two concerns each, and partials
of the Class1 class existing in three of its concerns.

Figure 6. Example of a directory structure implementing a 2D hyperspace with a single class.

6.1.1 Dimensions, Concerns and Hyperslices

The MDSoC hyperspace implemented using the approach summarized above is limited to the
code artefact and offers a choice of different formalisms: all .NET 2.0 (and above) languages.
Unless .NET should offer language coexistence mechanisms for the same project, only one of
these formalisms is supported in each MDSoC hyperspace at a time.

Partial types allow classes to be decomposed. Class decomposition results in partial classes.
Partial classes abide to a lighter set of completeness constraints than classes. Thus, partial
class units can be considered at a smaller granularity than class units. A partial interface can
similarly contain a sub-set of the declarations of the complete interface. Yet, there are no
incomplete interfaces, so partial interface units have the same granularity of interface units.
However, partial types allow interface declarations to span several different files, also
providing a decomposition mechanism for interfaces.

14 For example, C# 3.0 is heavily extended with functional programming constructs.
15 When possible we refer generally to partial types instead of specifically to partial classes or interfaces. When
adequate, details about partial classes or interfaces are presented.

59

Method units are at an even smaller granularity. With partial types, it is possible to have a
partial class with only one method. This method can also exist in different partial classes for
the same class type. This way, partial types also provide a decomposition mechanism for
methods16. But there is no native method composition mechanism in .NET. Methods
decomposed into different partial classes will not be composed and make it impossible for
these partial classes to be composed themselves. In these situations, the .NET compilation
process yields an error due to finding more than one method implementation for the same
class type. In the model implemented by the partial type approach, method decomposition is
possible but invalidated by the compilation process. As such, the primitive units of this model
are partial types (classes and interfaces).

As seen in Section 3.2, the first step in applying MDSoC is defining the hyperspace. First,
dimensions and their concerns are determined (step 1 in Figure 7). The two-level directory
structure for dimensions that we proposed easily accommodates the requirements of MDSoC
dimensions and concerns. Implementing this directory structure is step 2 in Figure 7. For
instance, the MDSoC model imposes that all dimensions and concerns must be unique.
Furthermore, concerns can only exist in one dimension. This is guaranteed by the properties
of the two-level directory system used to implement dimensions and concerns in the current
approach.

Figure 7. Simplified block diagram for the .NET partial types MDSoC approach.

The primitive units of this approach (partial types) can be physically separated in different
files, each placed under the appropriate concern directory (step 3 in Figure 7). This way, to
populate the concerns, existing classes and interfaces should be decomposed into partial types
and new units should be created as partial types, unless the entire type would belong to a
single concern.

In this approach, concern directories are hyperslices, as they physically implement the
concern boundaries. There is an equivalence correspondence between concerns and
hyperslices, as [Tarr99] proposes and Hyper/J implements [Tarr01]. This equivalence is the
most limited implementation of the more general concern-hyperslice relationship of the
MDSoC model.

An MDSoC hyperspace can be extended by the introduction of new units, repeating step 3 in
Figure 7 for each new unit. It can also be extended by the creation of new concerns and even
dimensions, through the optional step 4 in Figure 7. These extension features are trivial in the
partial types approach. New units can be introduced by being placed in new files inside the

16 In fact, simply by splitting up methods, even outside of partial classes, we are decomposing them. OOP
provides most of these decomposition functionalities. What it does not provide are the respective composition
mechanisms. Without composition mechanisms, the result of decomposition is invalid for compilation.

Identify concerns
and dimensions

Create the hyperspace
directory structure

Create (partial) classes
inside the appropriate
concern directories

Identify new concerns or

separate existing ones

1 2 3

4

60

appropriate concern directory. If the units that are being introduced correspond to more than
one concern they should be decomposed using partial types. Dimensions or concerns are
added by creating new directories in the appropriate level. These are placed under the parent
dimension directory in the case of concerns.

This approach only offers one kind of hyperslice implementation model. That is, the first
implementation model presented in Subsection 3.2.1, which implements actual physical
decomposition. .NET offers no kind of mapping facilities to create virtual hyperslices while
retaining composed code. After the source code is decomposed, or as it is created in the
decomposed form, there is no way to manipulate it in a composed form. As the composition
mechanism is part of the compilation process it will not even be possible to view the
composed code directly. This way, most of the time, the source code must be manipulated
while decomposed. Programmers using this approach will be forced to focus each concern
separately. In our opinion this is mostly a good thing.

Nevertheless, when introducing new types or when composition itself is under scrutiny, there
should be some kind of view of the composed result. Microsoft Visual Studio offers two
features that will help in this matter; both were presented in Section 4.2.5. In Visual Studio
2005, class diagrams ignore the partial class structure and display entire classes, thus class
diagrams offer a perfect view of the composed result. This view is equivalent to the object
dimension view. As such, class diagrams in this approach can be considered as a
materialization of the object dimension of the MDSoC model. Class diagrams also allow
navigation to the code containing the units displayed for a particular class (variables, methods
and properties). In the case of types decomposed in partial types, this navigation is made
directly to the partial type containing the unit in question. As for the second feature,
Intellisense is an auto-completion feature that suggests units (methods, classes, etc.) based on
the current context of program edition. Intellisense uses information that is equivalent to the
compiled result of the project. When programming in a .NET project that is organized as a
hyperspace, this information is equivalent to the result of composition. As such, Intellisense
also provides a contextual view of the object dimension. A feature equivalent to Intellisense is
also available in the SharpDevelop IDE with the same behaviour for partial type based
hyperspaces.

Without mapping facilities and relying solely on physical decomposition, the current
approach only supports the separation in different concerns of units that are decomposable.
But, there can be indecomposable units that may need to be associated with different concerns
in different dimensions. These units must be left in only one of these concerns or otherwise be
replicated in the different concerns. Both options are unsatisfactory. This approach is limited
to the code artefact, so different artefacts, that usually must be bound using a virtual scheme,
are not contemplated.

As seen, with this approach, units that belong to more than one concern are either
decomposed into these different concerns or are indecomposable, and can only be bound to a
single concern. In this approach, the same unit never belongs to two concerns at once, thus,
concerns never overlap. This provides the necessary guarantee that no overlapping occurs
between concerns in the same dimension, fulfilling one of the requirements of the MDSoC
formal model [Ossher99]. Nevertheless, as justified in the previous paragraph, this also makes
it impossible for concerns to overlap between dimensions, even though it is allowed in the
MDSoC model [Ossher99].

Recall from the MDSoC model, that all units must belong to each dimension. As such, in
MDSoC, each dimension has a special None concern [Ossher99]. In this approach each unit
will exist in only one dimension. This causes the None concern of each dimension to be made

61

up of all the units that belong to all the other dimensions. That is, the None concern of a
dimension will be composed by all the files in all the directories of hyperspace, except the
directory for the dimension in question. This way, instead of manually creating a None
concern directory in each dimension, with this approach, the remaining dimension directories
should be used to find None concerns for any dimension.

MDSoC also defines that all units must belong to at least one hyperslice [Ossher99]. In this
approach, units will belong to a hyperslice as long as they are placed under the appropriate
directory. It could be dictated that no files can exist outside concern directories, but this is not
enforced natively. Hyper/J does not enforce this restriction either [Tarr01] as it would forbid
iterative refactoring from composed code into MDSoC decomposed code.

MDSoC defines that hyperslices must be declaratively complete [Ossher99]. This is usually
achieved by introducing declarations for all referenced units that are not present in the
hyperslice. Here, the partial type approach is limited by the fact that the .NET compiler does
not allow multiple declarations of units inside the same project. Most .NET languages also do
not allow the declaration of units without also providing an implementation, unless these units
are declared abstract17, which is not adequate for this approach. Instead, we introduce
declarations as empty or equivalent implementations. For instance, a method declaration can
be a method that throws an unimplemented exception. This way, with partial types, class and
interface units can always be declared as an empty partial type, overcoming this limitation for
classes and interfaces. If the referenced units do not exist inside the project, then, it is possible
to introduce declarations for any kind of units (for example, classes, methods, variables and
properties). This way, in this approach, declarative completeness in hyperslices can only be
achieved when referenced units do not exist inside the project, are classes or are interfaces.
Declarative completeness in hyperslices cannot be achieved when there are references to class
members that exist elsewhere inside the project. Hyper/Net overcomes this limitation for
method units as we will present in the next section. Nevertheless, without declarative
completeness, when referenced units are missing, the compiler will show the situation as an
error. It can be corrected by introducing hyperslices which offer the missing referenced units
in the project or a reference to an external project with these units. The need for missing units
is easily acknowledged this way. Having them explicitly declared might not provide a great
advantage. Again, similarly to the issue with the physical None concern implementation, we
are against the manual introduction of elements that can be automatically identified.

6.1.2 Hypermodules

Finally, having addressed most decomposition and hyperspace structure issues, we focus on
the composition model of the partial types MDSoC approach. Composition is automatically
provided in this approach. It is executed by the .NET compiler. During compilation, partial
types are brought together into a single piece which holds the entire type implementation in
the compiled code. Partial types implement strict unit matching by type. A partial class
matches other partial classes of the same class type. The equivalent applies to interfaces.
There is no way to compose partial types that do not correspond to the same type. The
integration process is simple18: the units (methods, variables, properties, etc.) from each
corresponding partial type are brought together under a single new type. This is a kind of
additive integration and shares the attributes of merge integration from SOP and MDSoC.

17 For example, abstract methods can only exist in abstract classes. Abstract classes cannot be instantiated, thus
the declared method cannot be referenced.
18 It was already described in full detail in Subsection 4.2.3.

62

In this approach, composition is defined by the decomposition, that is, by the partial types that
are created during decomposition. The composition model for partial types is equivalent to
defining a single MDSoC hypermodule for each .NET project. This hypermodule will be
composed of the set of all hyperslices (concern directories) in the project that is being
compiled. The compilation of a .NET project provides composition relationships that bind the
different partial types of the same type to a single unified type. From this perspective, partial
type composition can be seen as a composition/weaving process taken during .NET
compilation. .NET compilation adds a limitation to the hypermodule defined by a .NET
project. Unless the resulting hypermodule is declaratively complete, compilation will yield
missing reference errors and fail. For the resulting hypermodule (project) to be declaratively
complete it will have to reference only units that it contains, are contained by the referenced
projects and binaries or are somehow declared. Hyperslices can reference any units offered by
other hyperslices inside the project, this will not cause any compilation errors. Thus,
hyperslices do not need to be declaratively complete themselves.

The hypermodule for each .NET project will contain all of the hyperslices in the project, that
is all of the concern directories included in the project. Then, there will exist a composition
relationship for each defined type that is decomposed in more than one partial type
declaration. Here, the input units are all partial types of the type being composed; in any
order19. The composition function will generate a single output type. The composition
function implements a simple merge composition for classes and interfaces. The output class
or interface will contain the union of all unit sets of each partial type, that is, all of the
methods, variables, properties, etc. of all the partial types being composed together. This
composition function has the requirement that there are no duplicate unit signatures in all of
the input units (in partial types).

6.1.3 Model Limitations

Recall, from the declarative completeness considerations for this approach, at the end of
Subsection 6.1.1, that it is possible to introduce declarations for referenced units that do not
belong to a project or to referenced projects. If these kinds of declarations are introduced, the
.NET compiler will output valid code that is also a valid hypermodule. Nevertheless, during
runtime, when units that were only declared are used, errors will occur. For instance, a
method declaration can simply be a method that throws an unimplemented exception. At
runtime, using this method will yield an unexpected exception. Thus, these resulting
hypermodules are incomplete. To create complete hypermodules out of these incomplete ones
we would require a mechanism capable of composing units in different compiled projects. It
is important to note that compilers for the .NET 2.0 languages do not allow partial types to
span different projects. That is, all partial classes of the same class type must belong to the
same project. This happens because .NET uses referenced projects in their composed form. If
it was possible for partial types to span different projects, it would introduce added flexibility,
namely the ability of composing units in different projects. Due to this .NET limitation,
hypermodules are not reusable in new compositions, thus must be complete (contain all
referenced units) to be of any use. The MDSoC model offers hypermodule composition to
promote reuse, but, as we will see, the partial types approach only offers other reuse
mechanisms, namely at hyperslice level.

19 The order of the partial types is not important as the composition function implemented by .NET partial types
is commutative.

63

As presented, the matching and integration executed by this approach is defined by partial
type decompositions. Additionally, our composition engine is the compiler, which generates
output for a single entire project at a time. This way, a particular project is limited to defining
one hypermodule. In MDSoC it is possible to use the same units in different hypermodules.
Thus, units inside a particular project should be usable as code in other projects. The MDSoC
model supports multiple distinct hypermodules for the same hyperspace [Ossher99]. Notice
that for this approach, up to this point, we have left the set of all units in hyperspaces
undefined. We will now bind it, making it possible for several hypermodules to co-exist in the
same hyperspace, thus, gaining added hyperslice reuse flexibility for the approach.

We could define that the unit set of each hyperspace is composed of the units inside a
particular project united with all the units in referenced projects. In this case we would be
limiting our hyperspace to a single project and thus a single hypermodule. Instead, we can
broaden the set of units in our hyperspaces. Because hypermodules are implemented as
projects, to follow the MDSoC model, we need to include as many projects as required into
our hyperspace. This is simply done by broadening the set of units belonging to hyperspace to
include any given amount of different projects. To do this, the dimension/concern space
model that was initially presented has to be extended. In a hyperspace using this approach,
containing more than one project, the set of dimensions is the union of all dimensions in all
the projects. The same applies to the concerns inside these dimensions. Each dimension of
such a hyperspace contains the set of all concerns belonging to that dimension in all of the
projects in the hyperspace. The set of units in the resulting hyperspace is the union of all units
in each project.

At this point, we are faced with a problem. Hyperslices should be usable in any of the
hyperspace hypermodules; they are in MDSoC [Ossher99]. This means that directories from
each project should be usable by other projects. The simple directory system in this approach
does not allow this, as the directory structure for each project is separate from the other
projects. Obviously, replicating hyperslice directories that are shared among projects is not an
acceptable solution. If the file-system that supports the projects allows symbolic links then
our problem is solved. One of the projects including a particular hyperslice can contain an
actual directory with files while the remaining projects have a symbolic link to this directory
(a linked hyperslice). Not all file-systems support such symbolic links, but even in these
cases, there is the possibility of using a source control solution to implement such symbolic
links. The directories could be replicated in the local file-system but changes in any of the
corresponding directories would map to the same directory and respective files in the source
control tree. The source control solution has the added advantage of working independently of
the file-system implementation being used. With either solution, it is even possible to have a
project fully composed of linked hyperslices. In the MDSoC model, hypermodules cannot
define specific dimensions to which concerns belong, they use the dimensions defined in
hyperspace. To implement the MDSoC model correctly, linked hyperslices should always be
placed under the same dimension directory as the respective real hyperslice.

As for composition, the limited matching model that was already presented poses an
additional limitation to this approach. Even though the previous paragraph describes how
hyperslices can be placed inside any given hypermodule, the possible compositions with these
hyperslices are severely limited. Units in hyperslices introduced in a particular project can
only be composed with equivalent units that share the same type and are all partial types.
When introducing hyperslices from different external origins, developed separately, it would
be an enormous coincidence if the partial types of units to be composed matched this way.

With the extensions presented, each hyperspace will be composed by all of the units in a set
of projects (and the respective units from all referenced projects). Furthermore, each project

64

will correspond to a different hypermodule. That means, there can be any amount of
hypermodules in a hyperspace. Thanks to symbolic links, either in the file-system or source
control, these hypermodules can be made up of any set of units from all the units belonging to
the hyperspace. The MDSoC model also defines a hyperspace composed of a set of
hypermodules to which any hyperslices in hyperspace can belong. With the help from
symbolic links, the partial types MDSoC approach fully supports these aspects of the MDSoC
model.

The most significant limitations of this approach relative to the MDSoC model can be
summarized as follows:

� In this approach, concerns cannot overlap between dimensions like they can in MDSoC.
This problem would be minimized if units smaller than classes were decomposable, but
they are not.

� MDSoC offers reuse mechanisms at hypermodule and hyperslice levels. The partial type
approach only offers a hyperslice reuse mechanism (with composition limitations) and
does not allow hypermodule reuse in new compositions like MDSoC does.

� Finally, this approach is limited to a single artefact and one formalism at a time (for each
hyperspace).

The next section presents a solution to some of these limitations.

6.2 The Hyper/Net MDSoC approach

The major advantage of the Partial Types MDSoC approach is that it is natively supported by
.NET 2.0. Without additional programs, .NET developers can start using MDSoC in their
software by using this approach. Nevertheless, this approach has limitations in terms of reuse
and the granularity of decomposition. Hyper/Net is capable of addressing some of these
limitations. This way, Hyper/Net is introduced as a complement to the composition features
of .NET compilation, in particular, as a pre-compilation code processor.

In the partial types approach, partial types are used as a decomposition/composition construct
for classes and interfaces. Even though methods are decomposable, the resulting code is
invalid as there are no composition mechanisms for the decomposed methods. Hyper/Net
introduces such method composition mechanisms with constructs that extend the partial types
MDSoC approach. As we will see, this lowers the granularity of primitive units of the
implemented model from partial types to methods.

The composition constructs of Hyper/Net take the form of .NET attributes. Attributes can be
applied to any unit of code (class, interface, variable, etc.) but Hyper/Net only takes into
account composition attributes for methods. The attributes made available with Hyper/Net are
a kind of composition metadata for methods. The use of partial types introduces similar
metadata for classes and interfaces. But, partial types also enable class and interface
decomposition whereas method decomposition is achieved using language features, by
creating separate, usually smaller, yet complete methods. Partial classes do not need to be
complete classes.

With the adequate Hyper/Net composition attributes, there can be a set of methods with the
same signature in different partial types of the same type. These methods will be composed

65

according to the relationship defined by the attributes. Ultimately, the attributes define the
composition function to be used while the types of partial types and method signatures define
which units should match. Together, partial types and Hyper/Net method attributes define
composition relationships which will be detailed further on.

The aim of Hyper/Net is to compose methods. As seen in the previous paragraph, Hyper/Net
will use attribute information from matching methods to execute their composition. Partial
types do not allow methods with the same signature in partial types of the same type. This
way, the code that should be processed by Hyper/Net cannot be handled by the .NET
compiler. As such, Hyper/Net is forced to work as a code pre-processor that generates valid
.NET code. Hyper/Net takes as input a .NET project and generates an equivalent body of code
with all matching methods composed into code that follows the .NET compiler rules: thus is
valid. To generate valid .NET code and compose methods, Hyper/Net has to replace each set
of matching methods with only one method. To achieve valid .NET code, the composed
method could be placed under any of the involved partial types, where the original methods
were contained. This would also allow the use of the generated code to provide hypermodule
reuse. This way, the code output of MDSoC might be used by developers in new
compositions. Still, recall that in the partial type MDSoC approach, different partial types
(and the methods therein) may belong to different concerns. Composed methods overlap all
the concerns where the original methods belonged. Unless all matching methods belong to the
same concern, there is no partial class where the composed method can be placed without
violating the dimensions of the MDSoC model. To avoid this situation, Hyper/Net also
implements partial type composition. Thus, Hyper/Net composes partial types, according to
the .NET partial type model, into a single unified type. Matching methods in each composed
partial type are composed and placed in the class resulting from partial type composition.
Chapter 8 presents the details of this Hyper/Net composition process and its implementation.
Finally, by implementing .NET partial type composition, Hyper/Net supports partial types in
.NET framework versions prior to 2.0. This way, Hyper/Net incidentally offers partial type
support for .NET 1.0 and 1.1.

In terms of expressivity, .NET partial types only enable one kind of composition, that is,
merge composition for partial types, as described in the previous section. Hyper/Net
composition attributes, which are used with methods, provide a wider choice of three different
composition types. Two of them, override [Ossher96] and merge [Harisson96], existed in
SOP and are supported in Hyper/J [Tarr01], whereas the other, bracketing, was introduced in
Hyper/J [Tarr01]. In Hyper/Net, when the override composition attribute is applied to a
method of a partial class, it will be the only method with that signature in the class resulting
from Hyper/Net composition. The merge composition attribute, when applied to matching
methods, dictates that each method is retained, with a changed name. The original methods
are replaced by a single method with the original name, which invokes all of the matching
methods, using a total ordering. This total ordering is defined by a different priority level
present as an argument of the merge composition attribute of each method. Additionally, the
merge attribute also dictates how the resulting method will compose the results from each
matching method, using another argument. Bracketing is an exception, as it can only be
applied to a single method. When the bracketing composition attribute is used, the method is
only changed by additionally starting and ending with the invocation of two distinct methods
that the attribute has to define. Each of these three attributes defines a different composition
function; these are presented further on as we bind the Hyper/Net MDSoC approach to the
model presented in Section 3.2.

66

6.2.1 Dimensions, Concerns and Hyperslices

The Hyper/Net MDSoC approach is still limited to the OOP artefact. Furthermore, Hyper/Net
processes source code using a parser. The current Hyper/Net implementation uses a parser
that is limited to two .NET languages: C# and VB.NET, but supports them starting from the
1.0 .NET framework. This way, the Hyper/Net MDSoC approach is limited to these two
formalisms: C# and VB.NET.

With Hyper/Net, type decomposition is still achieved using partial types. Nevertheless, as
Hyper/Net implements method composition, method decomposition is now supported.
Methods can be decomposed into smaller methods, with the same signature. Even with
Hyper/Net, it is not possible to decompose units into units smaller than methods. This way,
methods are the smallest decomposable unit and at the same time one of the primitive units in
hyperspaces using the Hyper/Net approach. As stated in Section 5.1, for Hyper/J, this is an
exception to the definition of primitive units from Section 3.2.

The current Hyper/Net implementation only supports the composition of methods (other than
constructors). Composition support could be extended to other types of units below the class
level, namely constructors, variables and properties, using the same attribute based approach.
This is one of the issues focused in Section 10.3.

Hyper/Net introduces only a physical decomposition mechanism for methods. It offers no
mapping mechanism to place the same method in different concerns/hyperslices of
hyperspace. This is equivalent to what happens with the partial types approach, for classes
and interfaces. Recall that in the partial types approach, hyperslices are composed of types
and partial types inside files in the corresponding concern directory. With Hyper/Net, a
method unit can be placed inside a hyperslice by adding it to a partial class in the appropriate
directory. If the directory already has a partial class for the class type to which the method
belongs, this partial class should be used. Otherwise, a new partial class (of the class type that
the method belongs to) should be created and the method placed inside it. The remaining units
are similarly matched to a hyperslice, like they were with the partial types approach. The only
difference with Hyper/Net is that methods with the same signature can exist in different
partial classes for the same class type.

6.2.2 Hypermodules

With the Hyper/Net approach, hypermodules are still defined as .NET projects. The .NET
project composition rule, defined by the partial types approach, must be extended to support
Hyper/Net method composition. Hyper/Net method composition provides additional
integration by offering a new composition function for each type of composition offered:
merge, override and bracket. These composition functions are exclusively for use with
method units. The composition rule itself is extended by adding one exception composition
relationship for each set of matching methods. The attributes of the methods in the set define
the composition function to be used in the exception composition relationship.

There is a set of matching methods for each set of methods, belonging to partial types of the
same type, where the methods have the same signature and at least one of the methods has a
Hyper/Net composition attribute. In this case the composition attributes must be either merge
or override. Bracket composition attributes define a different set of matching methods, with a
bracket attribute and the two methods declared as before and after methods in the attribute.
Additionally, the following rules must also be followed:

67

� In case one method in a set of matching methods has an override attribute, no other
method in the set can have an override or merge Hyper/Net composition attribute.

� In case one method in a set of matching methods has a merge attribute, all other methods
in the set must also have a merge attribute with a different priority level (Section 7.2
provides details about priority levels).

Each of composition function defined by a different Hyper/Net composition attribute is
implemented in the following away:

� Override: returns the method with the override attribute.

� Merge: renames the merged method and creates a new version of the method that invokes
the original ones. It will keep the return results of calling each method and, finally, return
the result of invoking a summary function with this set of results.

� Bracket: changes the original method so it first invokes the before method, runs the
existing code, retaining its return value and invokes an after method with it. Finally, the
after method is used to compute the return result.

If the methods being composed belong to a partial interface, then they will only be method
declarations. Method declarations should not be merged or bracketed according to the
previous composition functions because they would result in methods with bodies. This way,
interface method composition with Hyper/Net should be limited to override composition.

The implementation details of each Hyper/Net composition function define the completeness
constraints that are applied to each set of input methods. In the case of override composition,
the method with the override attribute must be complete. With merge composition, all of the
original methods must be complete, because they will be used in .NET compilation. With
bracket composition, the original method as well as before and after methods must be
complete as they will also be used for compilation. The methods generated by merge and
bracket must also be complete, but this is guaranteed by the Hyper/Net implementation.

6.2.3 Model Limitations

The decomposition/composition power of Hyper/Net can be used to overcome some of the
limitations with the partial types approach in supporting overlapping concerns. With
Hyper/Net, concerns that overlap due to method units that belong to all of them can be
avoided. This is done by decomposing these methods into the different concerns. These
concerns may belong to any dimensions. Properties, variables and constructors are still not
decomposable with Hyper/Net. Yet, as a work-around, methods can be used instead of
variables and properties to achieve decomposition. Even though, Hyper/Net should offer
composition support for other units below the class level, other than methods.

Decomposition will not always solve the issues with overlapping concerns. It is true that some
dimensions contain decomposed units that would only overlap concerns in different
dimensions if they were indecomposable. This is frequent with dimensions created to hold
new kinds of decomposed units. For example, methods which provide discounts in a business
rule dimension or methods providing logging in a non-functional requirements dimension will
not exist in other dimensions, namely the Features dimension. Such dimensions are fully
supported by a physical decomposition model. But, some dimensions simply provide an
alternative view for existing units, namely the object dimension. In these dimensions, there is

68

no possible decomposition to avoid overlapping concerns with other dimensions. This kind of
dimension needs a non-physical decomposition mechanism; that is a virtual matching
mechanism. These kinds of dimensions were defined as virtual dimensions in Subsection
3.2.1. Virtual dimensions are not supported by Hyper/Net or the partial type approach, except
for the object dimension, as explained in the previous section.

Also, as analysed in the previous section, declarative completeness may not be mandatory due
to compiler error reporting mechanisms. Nevertheless, method decomposition also extends
the declarative completeness support in MDSoC. Method declarations can be introduced
using empty methods that are then overridden by methods in other concerns. References to
variable or property units can be replaced with the use of methods. Only constructor
declarations are impossible to introduce with the Hyper/Net approach. Unless a hyperslice
references constructor units that it does not contain, it can be made declaratively complete by
introducing method declarations or replacing property/variable references with method
references20.

As Hyper/Net does not introduce a non-physical decomposition mechanism, hyperslice reuse
still depends on source control mechanisms or other mechanisms to avoid code copy.
Hyperslice reuse is still limited by composition, in particular by the strict type matching
imposed by partial types and method matching. By introducing method composition,
Hyper/Net allows methods from a reused hyperslice to be composed with other methods, but
the method signatures, name and containing partial type must match.

Hyper/Net outputs composed source code for a particular project. As hypermodules are
equivalent to projects in this approach, the Hyper/Net output for a project could simply be
used like a hyperslice in new compositions, offering hypermodule reuse. The problem is that
Hyper/Net output does not contain any partial types21. In this approach, matching can only be
done with partial types of the same type and methods, with the same signature, inside
matching partial types. Even though hypermodules could be reused as hyperslices in new
hyperspaces, there would be no way of matching their units to units in other hyperslices.

If Hyper/Net did not implement partial type composition, the resulting code could be used in
new compositions, as it would still have the original partial types. But, the code resulting from
Hyper/Net processing would not be equivalent to the result of a hypermodule. Instead, it
would be equivalent to a single project hyperspace in the partial types approach. The resulting
set of hyperslices could be reused but this would not be equivalent to a reuse mechanism for
hypermodules.

There is a more effective work-around that would enable hypermodule composition with
Hyper/Net. As Hyper/Net implements partial type composition itself, the .NET partial type
composition model could be slightly changed, to allow the composition of normal types with
a set of partial types of that type. This would be equivalent to assuming all type declarations
are partial. With this change to Hyper/Net, it would be possible to match non-partial types in
the Hyper/Net output of a project (a hypermodule) to other classes in a new project that
included it. This work-around still has the heavy limitation of matching by type, invalidating
composition of different hypermodules that were not developed with the purpose of being
composed together.

Fully supporting hypermodule reuse, as defined in the MDSoC model, would require the
separation of composition definitions from the code itself. It would also require the

20 This change is intrusive to other hyperslices providing the referenced units. The introduction of composition
constructs for variables and properties in Hyper/Net would overcome the need for this work-around.
21 Hyper/Net also implements partial type composition (see Section 8.1 for details).

69

introduction of more powerful matching constructs than matching units by type or signature.
Both partial types and Hyper/Net attributes belong to the code artefact. First, these
composition constructs should be implemented in an artefact of their own, or in separate
concerns of the code artefact. Then, constructs for matching classes and interfaces with
different names/types and methods with different names should be introduced. This is
naturally a case for the statement of future work for Hyper/Net (see Section 10.3).

As will be seen in Chapter 7 and Chapter 8, Hyper/Net supports input files in either VB.NET
or C# and can output code in any of these languages, independently of the input language. If
the issues with hypermodule reuse are overcome, Hyper/Net will immediately support
hyperspaces with multiple languages. Projects in different languages could be composed
together. Each project in a different language is a hypermodule in a different formalism. This
way, each hypermodule can be processed, using Hyper/Net, to generate output in the same
language. Then, the result of these hypermodules could be used together in a new project.
This way, different formalisms (.NET languages) might co-exist in the same hyperspace.
Furthermore, as Hyper/Net pre-processes .NET projects (before compilation), it could be
changed to handle projects with input files in different languages. This is possible due to the
features of the .NET language parser used by Hyper/Net that maps C# and VB.NET to the
same Abstract Syntax Tree (AST) structure. The details on how Hyper/Net uses this AST are
provided in Chapter 8. As seen, with the adequate changes, Hyper/Net could support multiple
formalisms in the same hyperspace, something that no MDSoC implementation up to date is
able to do.

As we saw, some limitations of the partial type MDSoC approach are overcome by
Hyper/Net. But, because Hyper/Net is based on partial type matching, there are still some
serious limitations:

� Hyper/Net supports overlapping concerns that can be removed through decomposition but
not overlapping concerns introduced by virtual dimensions. Hyper/Net offers no virtual
dimension support, except for the object dimension.

� Hypermodule reuse is still not possible. Hyperslice reuse is a little enhanced by the
introduction of method composition. Nevertheless, it remains seriously limited by the
strict matching model of partial types, not able to compose hyperslices developed without
knowledge of each other.

� Finally, this approach is limited to a single artefact (code) and two formalisms (C# and
VB.NET).

Some possible extensions to Hyper/Net that can overcome most of these limitations were
already mentioned and are further developed in Section 10.3.

6.3 Conclusions

.NET partial types allow applying MDSoC without the need for specialized MDSoC software.
The approach presented in Section 6.1 uses directories to support the hyperspace dimensions
and concerns structure. Partial types are created inside the appropriate concern directory,
implementing a physical decomposition of an MDSoC hyperspace. The .NET compilation
process is in charge of composing the partial types together. Relying only in native .NET
language features comes at the cost of severe reuse limitations. With the partial types

70

approach, hypermodule reuse is not possible and hyperslice reuse requires previous planning.
Also, there is no virtual decomposition mechanism and, because there is no composition
support for class members, these cannot be decomposed.

Hyper/Net adds support for method composition to the partial types approach. This allows
methods to be physically decomposed into different partial types. Hyper/Net acts as a source
code pre-processor. It is able to compose methods with the same signature using either merge
or override composition. It also provides bracket composition that can be applied to any kind
of methods. Even though Hyper/Net extends the partial types support for unit
decomposition/composition, Hyper/Net lacks support for virtual decomposition. Virtual
decomposition is required to implement particular types of dimensions that provide
alternative views of a set of physically decomposed units.

If the reuse limitations of the partial types approach and Hyper/Net are overcome, there will
be an additional benefit that also makes these solutions unique. Both approaches are able to
support hyperspaces with multiple formalisms of the code artefact. With adequate reuse
features it would be possible to compose units coming from different projects, written using
different formalisms.

71

Chapter 7

Using Hyper/Net

This chapter presents guidelines on how to use .NET partial types and Hyper/Net for MDSoC.
The first section describes how the partial types MDSoC approach can be implemented for
.NET projects. Two usage scenarios are covered: how to apply this approach to existing code
and how to use it initially, from scratch. The same scenarios are also covered in the second
section, with the description of how Hyper/Net can be used when the partial types approach is
not enough. Hyper/Net composition attributes are described in detail so the programmer is
able to use them in different composition scenarios. The second section ends with the
description of how to use Hyper/Net with .NET IDEs. This describes how the integration of
Hyper/Net with existing programmer environments can be achieved.

The third section discusses how MDSoC projects can be tested. The focus is on unit tests. It is
proposed that these tests share the same concerns of hyperspace as the tested code. Testing
guidelines are presented for the two main .NET test platforms, with particular MDSoC
approaches tailored for each.

Sections four and five present two complete examples of how MDSoC can be used to
implement projects from scratch. The example described in the fourth section is limited to a
single class so it can be more detailed. The example of the fifth section was used in most
MDSoC literature and serves as a comparative and validation test for Hyper/Net. As the
section shows, with Hyper/Net, it was possible to implement most of the example features in
the way MDSoC literature presents them.

7.1 Using the Partial Types approach for MDSoC

This section succinctly presents the main usage lines of the partial types MDSoC approach.
Even without using partial types, it is common to use the directory structure inside .NET
projects to separate different features or concerns. This is done in an ad-hoc fashion and is
limited to what the object decomposition allows to be separated.

The process of using .NET partial types for MDSoC was summarized in the beginning of
Section 6.1. Figure 7 in that section provides a condensed view of this process. To create an
MDSoC hyperspace in a .NET project, a programmer has to create a set of top level
directories, one for each dimension. It is not uncommon for projects to have only a few top

72

level directories like this. Simpler projects will only have one. This structure is not definitive.
New dimensions can be added latter and it is also easy to break up dimensions, merge
dimensions or move particular contents between different dimensions. This is done simply
using directory creation and drag-and-drop. These mechanisms are the supporting pillars of
the growth and evolution of MDSoC projects.

A second directory level populates each of these dimensions with concern directories. These
directories provide a finer granularity separation in a way that is defined by each dimension.
Frequently, some dimensions have many more concern directories than others. Not all
dimensions are equal in weight when compared. Yet, MDSoC allows the programmer to
focus each of these dimensions and the concerns therein as if they we all equal. The only kind
of directories in MDSoC hyperspaces that can contain files are concern directories. These
files are usually code files but can also be resource files and other file types.

The two levels of directories in MDSoC hyperspaces can be all created initially or can be
created as they are populated. The second approach provides the benefits of iterative
development. Nevertheless, if prior to programming there was a solid MDSoC design phase,
it is also adequate to initially create the entire hyperspace (directory structure) based on the
dimensional structure of the design stage. It is also possible to define the dimensional
structure of hyperspace as early as the analysis stage. This dimensional structure should then
be used in the design and code artefacts.

Once there are concerns in the second level of directories, programming can start. Typically,
any required types should be created as partial types in each concern. This way, the same
types can readily be introduced in other concerns once they are needed there. The partial types
in each concern will only contain the members that pertain to that concern. A .NET project
that implements an MDSoC hyperspace can always be extended and changed. For instance,
particular members of a type can be moved to the respective partial type in any other concern,
even a new concern. If a particular concern starts to concentrate too many units it is also
possible to decompose it into different concerns by moving the units (for example, class
members) into a set of new concerns. It is also possible to merge different concerns by doing
the inverse process, moving units in the different concerns into a single new one. This process
consists mainly of copy-and-paste or even of drag-and-drop operations.

The versatility provided by .NET projects and the MDSoC hyperspace directory structure also
allows direct support for mix-and-match operations. Creating a different version of a program,
by removing a set of concerns, is as simple as removing the respective set of directories from
the project. These can be reintroduced latter on. This allows using the same .NET MDSoC
project to generate different flavours of the same application. This kind of functionality can be
particularly useful when developing software product lines.

A normal .NET project can be converted into an MDSoC hyperspace implementation. This
allows programmers to apply MDSoC to existing software. The units in the original code
must be matched to concerns in a hyperspace. Again, hyperspace creation, using the two level
directories structure, is the beginning of the process. Entire types can be matched to concerns,
but usually only part of a type’s members is matched to a concern. This is handled by creating
the adequate partial type in the concern and moving in the type members that belong there.
Applying MDSoC to existing software is a refactoring task, so the functionality of the
software must not be changed during this process. At all times, it should be possible to
compile the code and run any validation tests. These tests can be used to guarantee that the
project functionality is not changed. Section 7.3 presents some of the particularities of testing
.NET MDSoC projects.

73

During the process of applying MDSoC to an existing .NET project, decomposed code
coexists with non-decomposed code. This violates the MDSoC model, where units must
always belong to at least one concern. This is necessary during the refactoring task but it is
not advised to leave only part of a project decomposed using MDSoC. Doing so may cause
difficulty in understanding the project and it will not benefit completely from the advantages
of MDSoC.

As presented in the previous paragraphs, the partial types MDSoC approach allows applying
MDSoC to existing non-MDSoC projects, as well as developing MDSoC projects from
scratch. The main requirement to apply MDSoC to existing projects is obvious: the source
code for the project must be available. That code should also be editable so it can be
decomposed.

It is important to notice that .NET partial types can be used with classes but also be with
interfaces. This is important when the same interface should span different concerns and is
achieved by decomposing the interface into partial interfaces in each of the appropriate
concerns. A partial interface will only declare the methods that are important for that
particular concern. These methods will then be implemented by classes that implement the
interface in that concern.

In the partial types approach, members of a type that are declared in a specific concern are
available throughout the remaining concerns. Furthermore, a type that does not exist in the
concern the programmer is working on, can be initialized and used from it. This will require
special care from the programmer. Once an element from another concern is referenced, a
bound has been introduced. The element can be replaced with an equivalent one, eventually
provided by a different concern. Still, changes to that element can be cross-cutting, as they
may require changes to the way the element is used in the referencing concerns.

An important feature for developers in any programming paradigm is error reporting. This is a
crucial functionality when developing with MDSoC. Adding to the standard error reporting
for .NET languages, the MDSoC hyperspace structure itself should be validated, along with
the composition rules and, eventually, any completeness constraints should be applied to their
result. Regarding the MDSoC hyperspace structure, the MDSoC model does not allow units
to exist outside concerns. But the partial types approach does and has no warning mechanism
to help avoid these situations. If the MDSoC model was followed strictly, these situations
should not be possible and would yield an error.

In the partial types approach, composition is defined by partial types and strict type matching.
Partial type composition itself may not be possible to perform due to different kinds of errors.
For instance, two partial classes of the same class type may extend a different class. This is
not supported in common .NET languages. It will yield an error and the problem should be
located in the partial classes that originate it (extend the different classes). Nevertheless, the
Microsoft .NET 2.0 compiler does not identify the error at this location. Instead it locates it in
the first partial class declaration for the class, which may even not extend any class. This
forces programmers to search the remaining partial classes for the origin of the error. A more
adequate localization would allow for immediate correction in the concerns of interest.

If a type resulting from composition does not meet the .NET completeness constraints, the
compiler detects the missing elements and should trace them back to the original source code.
For example, the missing elements can be methods that should exist because of a class
implementing a particular interface. In this case the partial class that implements the interface
should be located as the source of the error. Again, the Microsoft .NET 2.0 compiler does not
do this and localizes the first partial class declaration.

74

Other kinds of errors, for instance syntax errors, are detected normally and reported in their
locations inside concerns of the MDSoC hyperspace. Here the Microsoft .NET 2.0 compiler
works in an adequate fashion from the MDSoC perspective. It takes programmers to the
specific concern of interest and simplifies error solving with MDSoC.

The inadequate behaviour of the Microsoft .NET 2.0 compiler with composition and
completeness errors should be corrected. If these errors were adequately localized, the
programmer would be helped in solving the problems in the appropriate concern. For
instance, with missing interface method implementations, these implementations should be
done in the same partial type that implements the interface. This would be pointed out by an
adequately localized error report. Nevertheless, for the remaining kinds of errors, the native
.NET partial types approach reports errors in the adequate concerns, extending the advantages
of using MDSoC to error correction.

7.2 Using Hyper/Net for MDSoC

When using the partial types approach for MDSoC, as classes are decomposed into different
concerns, some of their methods can also match more than one concern. The partial types
approach does not provide a way to decompose these methods into the appropriate concerns.
Without this possibility, programmers have to rely on different workarounds, like creating
differently named methods in each concern, which affects the code that uses the class in
question, or keeping the method in only one of the concerns it belongs to. Neither workaround
is satisfactory. This is where Hyper/Net comes into action. With Hyper/Net composition
attributes these methods can be decomposed as necessary. Hyper/Net will be in charge of
reuniting the decomposed methods according to composition attributes. The ability to
decompose methods is useful when decomposing existing (indecomposed) code, refactoring
an existing decomposition or by allowing the creation from scratch with decomposed
methods.

A method should be separated into the appropriate number of smaller methods, each
containing the part of the original method functionality (statements) that belongs to a specific
concern. To introduce these methods into the appropriate concerns, they should be added to a
partial class in the appropriate concern. The partial class must be of the same type of the class
to which the original method belongs to. This partial class may already exist. If it does not, a
new partial class for the type can be created to hold the method in the appropriate concern.
The remaining units are similarly matched to a concern as they were with the partial types
approach. The only difference here is that a method with the same signature can exist in
several partial classes for the same class type. Also, like the partial types approach, Hyper/Net
can be used with new MDSoC projects. In this case, the methods can already be created in a
decomposed form inside the appropriate concerns.

Hyper/Net composition attributes are particular .NET attributes that can be applied to
methods. Each Hyper/Net composition attribute provides a different way to compose
methods. Hyper/Net offers the following composition attributes:

� MethodMerge – used for merge and override composition.

� MethodBracket – used for bracket composition.

75

Override is the simplest composition construct. It can only be applied to a single method from
a set of matching methods. The method it is applied to will be output into the composed code
while the others are simply removed. The override construct is defined as a MethodMerge
attribute with a MethodMergeAction of Override, as exemplified in Listing 3.

[MethodMerge(MethodMergeAction.Override)]

Listing 3. Syntax of the override composition attribute.

Both override and merge composition are defined using the MethodMerge attribute. This has
to do with the common implementation for both composition methods and is further
explained in Subsection 8.2.1.

The merge composition construct allows embodying all of the decomposed methods
functionality into a single composed method. The methods involved in merge composition
must be methods with the same signature that belong to different partials of the same type.
The composed method invokes each of these methods in turn. A MethodMerge attribute with
a MethodMergeAction of Merge should be applied to each involved method, as exemplified in
Listing 4.

[MethodMerge(MethodMergeAction.Merge, <Priority>, <MergeResultMethod>)]

Listing 4. Syntax of the merge composition attribute.

Each attribute should also define a different priority parameter (<Priority> in Listing 4). This
allows Hyper/Net to determine the order of invocation of the original methods in the
composed method body. The priority parameter is optional. When not defined for
MethodMerge attributes with a Merge MethodMergeAction, the priority is set to the default
value of -1. Because there must be a different priority for all merged methods, at most one
method can lack an explicit priority definition. No method should define a priority of -1
explicitly. The default value may be particularly useful in the case of merging only two
methods. The priority arguments define a total order in which merged methods will be
executed.

Finally, a method that is used to compose the return values of the original methods can also be
passed as an argument to the MethodMerge attribute (<MergeResultMethod> in Listing 4).
This method must be local to the class to which the merged methods belong to. Two different
MethodMerge attribute constructors allow defining this method, either by passing a typed
delegate or by passing a string with the name of the method. The method must always have a
particular signature (see Listing 5). The result composition method receives an array of
objects that are the results of the different original methods and returns an object of its own,
which will, in turn, be returned by the composed method. Currently, Hyper/Net only
implements support for the second constructor using the string argument. In this case, the
method is obtained at runtime and any failure to match the delegate type is only identified at
that point. The typed alternative would be more adequate by providing compile time type
validation.

public delegate object MethodMergeResult(params object[] mergedResults)

Listing 5. The MethodMergeResult delegate type used by result merger methods.

Only one merge MethodMerge attribute in these methods should define a result merger
method. If more than one is defined, Hyper/Net uses the last result merger method it finds;
according to the order it processes the source code.

76

In merge composition, all merged methods should have one merge attribute. But there is an
exception. One of the methods can have no such attribute if all the others have one. This case
will be equivalent to that method having a merge attribute (a MethodMerge attribute with a
Merge MethodMergeAction) with the default priority (-1).

The MethodMerge attribute can be used when an indefinite number of matching methods need
to exist. Another composition attribute, MethodBracket, handles more specific scenarios,
when one method must be preceded and succeeded by two other particular methods. The
focus of the bracket composition is the method to be bracketed. With merge composition all
methods involved are equally important.

[MethodBracket(<BeforeMethod>, <AfterMethod>)]

Listing 6. Syntax of the bracket composition attribute.

The method that will precede the method to be bracketed is the before method
(<BeforeMethod> in Listing 6). This method receives information about the bracketed
method and its arguments. Bracket composition must also define an after method
(<AfterMethod> in Listing 6) which succeeds the bracketed method and determines the return
value of the composed method. The after method receives the same information as the before
method, along with the return result of the bracketed method.

Before and after methods will not have the same signature as the method to be bracketed.
They must each implement a delegate type (see Listing 7) which provides the appropriate
method signature with the required parameters and, for the after method, the object return
type. Like with the result composition method in the merge construct, Hyper/Net only
supports the identification of these methods using the MethodBracket constructor that passes
their names as strings. Before and after methods must be local to the class that contains the
bracketed method.

public delegate void BeforeMethod(MethodBase method, params object[]

paramters);

public delegate object AfterMethod(MethodBase method, object returnValue,

params object[] paramters);

Listing 7. Before and after methods implement delegate types.

In other MDSoC implementations either one of these methods is optional, but with Hyper/Net
both the after and before methods have to be defined. This is imposed by the MethodBracket
attribute constructor which must receive the identification of both methods. Nevertheless, one
can always use empty before or after methods, which will not change the behaviour of the
original method.

Merge composition can coexist with bracket composition. That is, a bracket attribute can be
applied to a method that is already involved in a merge composition. Hyper/Net first
processes the merge composition. The bracket is then processed with the merged method.
This is equivalent to first generating the merged code and then applying the bracket attribute
to the merged method. This way, with Hyper/Net, it is not possible to bracket a single
instance of a method that is involved in a merge composition. The same does not apply to
override and bracket composition. Override composition removes all matching methods but
one. Any bracket composition attributes in methods other than the one with the override are
also discarded. Bracketing is only applied in conjunction with override composition if it is
applied to the same method as the override attribute. As for merge and override composition,
these cannot coexist because they have contrary effects. Hyper/Net yields an error and stops

77

processing decomposed code when it finds merge and override attributes in the same set of
matching methods. Finally, there can only be one composition attribute of each type applied
to the same method inside a particular partial class.

As seen in the previous section, interfaces can be composed using the partial types MDSoC
approach. Hyper/Net introduces the possibility of overriding or merging methods. This allows
the implementation of interface methods to be decomposed into different concerns. The
replication of the respective method declarations in different partial interfaces should also be
possible to support the removal of particular concerns. For instance, an interface can declare a
particular method in one concern and the method can be implemented in this and other
concerns. If the concern where the interface declares the method is removed there will be no
declaration for the interface method in the remaining concerns where the method is
implemented.

Unlike method implementations in classes, method declarations in interfaces only define the
signature of the method. As in Hyper/Net methods are matched by their signatures and the
containing class type, there is no need to merge method declarations in interfaces. As such,
override composition can be used with the method declaration, allowing it to exist in as many
partial interfaces of the desired interface type as required. This is fully supported by
Hyper/Net. Nevertheless, as the method declaration signatures must always be equal, the
override attributes should not even be necessary. Supporting this only requires a simple
change in Hyper/Net but is an issue for future work.

Merge and bracket attributes should not be used with interface method declarations.
Nevertheless, Hyper/Net allows these attributes in method declarations and processes these
declarations as if they were implementations. This will generate an invalid interface
declaration in the composed code. It is also part of the future work plans for Hyper/Net to
detected and disallow these situations.

In terms of support for existing code, Hyper/Net can be used to compose methods from
separate existing projects. Still, there are some limitations. The code must be merged under a
single project so that partial types can be merged22. The methods which can be merged must
belong to partial classes for the same class type and have the same signature. These are very
restrictive limitations. Still, if the original source code can be edited, it is possible to first
decompose it and adapt it to an adequate hyperspace, where the methods that need to be
composed match. Nevertheless, this approach is limiting from the perspective of reuse. By
applying it, the code loses its original form. This means the resulting code may not be usable
in place of the original code. Hyper/Net reuse limitations were already discussed in
Subsection 6.2.3 and will be revisited in Section 9.2.

Statements inside a particular concern often need to refer to methods or other kinds of units in
other concerns. More generally, concerns may depend on functionality from other concerns.
Nevertheless, concerns should not depend on each other directly. Take, for instance, two
concerns which provide the same functionality required by a third concern, the client concern.
These two concerns may provide the same functionality through methods with different
signatures. In this case, if the first concern is switched with the second one, even though the
functionality is still present, the client concern will not be ready to use the functionality
without being changed. This situation may be solved with appropriate composition constructs
that operate at the level of method calls. Such composition constructs could be used to replace
the method call with the call of an adapter that abstracted the different ways the same
functionality is offered by different concerns. Introducing this kind of specialized composition

22 This is also a limitation of the partial types approach with Hyper/Net.

78

constructs into Hyper/Net is an interesting issue for future work (see Section 10.3). Another
solution might be to require that interfaces for inter-concern dependencies are defined and that
the set of concerns which offer such functionality implement these interfaces. Nevertheless,
what is important to keep in mind in the context of this section is that, with Hyper/Net, using
functionality from different concerns introduces a dependency upon types and member
signatures which Hyper/Net alone cannot help overcome.

On a more positive side, Hyper/Net method composition retains the ability of the partial types
approach to perform mix-and-match operations. When the directory for a concern is removed
from a project, the contained partial types and any decomposed methods therein are also
removed. The inverse happens when a concern directory is reintroduced into the project. As
merged methods must all have merge attributes, merge composition is adequately prepared for
such changes during mix-and-match. It is not the case of override composition, as it may not
be possible to remove a concern with an overriding method without changing the remaining
code. This issue is further discussed in Subsection 10.3.1.

As for error reporting, Hyper/Net detects and reports composition and parsing errors. Only the
first error detected is presented in the console output of Hyper/Net. These errors are relative to
the decomposed code and can be analysed in the project source. For easier usage, an adequate
IDE integration should present all detected errors and allow navigation to their locations.
Other errors not detected during the composition or parsing phase will only be detected by the
.NET compiler. These errors are located in the composed code that is output by Hyper/Net.
This makes it more difficult for the developer to analyse and solve any such issues, having to
understand the composition process. Future versions of Hyper/Net should address these error
traceability issues and requirements.

7.2.1 Using Hyper/Net in SharpDevelop

A .NET MDSoC project using Hyper/Net can be developed using the SharpDevelop IDE like
normal .NET projects can. The directory supported hyperspace is easily implemented using
this IDE. The IDE also supports partial types and copes with repeated method declarations, so
the look and feel of developing MDSoC projects should be pretty much the same as
developing normal projects.

A .NET MDSoC project can only be compiled after it is processed by Hyper/Net. The project
itself is only used by Hyper/Net and what needs to be compiled is the output file it generates.
This can be achieved by calling the Hyper/Net console application (HyperNet.exe) with the
appropriate arguments:

� The input project base directory, which is the path to the directory containing the .NET
project.

� The input project file, which is the filename of the .NET project file. It can also be a
relative path from the project base directory.

� The output file path, which is the path for the file where the composed code will be
written. This can be a relative path from the directory Hyper/Net is invoked from.

The output file generated by Hyper/Net can be used as the single source code file of another
.NET project which is then compiled normally. Hyper/Net will overwrite the file in the other
project and the project can be built, finally generating the binaries for the original MDSoC
project.

79

Instead of doing this process manually, it could be supported by build file. SharpDevelop
supports the NAnt build system natively so it would be the build platform of choice for this
purpose. Nevertheless, we did not explore this line of integration.

7.2.2 Using Hyper/Net in Visual Studio

Visual Studio has a similar behaviour to SharpDevelop in terms of .NET MDSoC project
support. It also supports partial types and copes with repeated methods. This means the
programmer can use standard IDE features, like Intellisense, in MDSoC projects.

The same integration described for SharpDevelop can be used with Visual Studio. Still,
automatically invoking Hyper/Net as a project pre-compilation step is an alternative that we
analysed using Visual Studio. The aim of this alternative is to allow compiling a .NET
MDSoC project with a normal project build, making it transparent for the programmer that
the project is using Hyper/Net, prior to .NET compilation, to be built. This requires that the
build actions for all MDSoC source code files are changed from “Build” to “Embedded
Resource”. This is done so that the .NET compiler will not use these files during compilation.
It will use the Hyper/Net output file instead. Then, a call to Hyper/Net is added as a project
pre-build event. Visual Studio build macros, like $(ProjectDir), can be used to provide the
Hyper/Net arguments. A pretty generic example is:

D:\HyperNet\HyperNet.exe $(ProjectDir) $(ProjectFileName) $(ProjectDir)Output.cs

Here “D:\HyperNet\HyperNet.exe” provides the path to the Hyper/Net console application
binary. The Hyper/Net arguments are obtained using macros. Only the output file has to be
explicitly identified; the filename used is “Output.cs” inside the project root directory -
$(ProjectDir). To work with this model Hyper/Net was changed to only process code files
which have an “Embedded Resource” build action. The build action of the Hyper/Net output
file (Output.cs in the example) must be set to “Build”. After this pre-compilation step
generates the output code file, the compiler will build that code, eventually together with
other source code files in the project that are not using MDSoC23 and so, have a “Build” build
action.

This solution meets our requirement of being transparent and supported by a standard build.
Nevertheless, it has a major drawback. Most IDE features that help programmers (for
instance, class diagrams and Intellisense) only make use of source code that is contained in
files with a “Build” build action. This way, to be able to benefit from these features while
developing MDSoC decomposed code, the build actions of all MDSoC source code files
should only be changed to “Embedded Resource” before building the project. This is not
practical at all. If Hyper/Net automated this change it would make this integration method the
most transparent and adequate one. Nevertheless, to do this, Hyper/Net has to write a changed
version of the project file. Visual Studio only processes these changes to the project file after
compilation stars, working with the project version that existed prior to Hyper/Net pre-
processing. We were not able to overcome this difficulty yet, so it is an issue for future work
(also discussed in Section 10.3).

We also detected another issue that is related with the IDE behaviour to changes on loaded
files. If the output code file is open in the IDE when the project is built, the compiler will use
the output code file that existed prior to being written by the Hyper/Net pre-compilation step.

23 Recall from earlier on in this section, that it is possible but not advised to have indecomposed code coexist
with decomposed code in an MDSoC project.

80

This results in a build with a previous version of the composed source code. This way, the
output code file should be closed when the project is built.

Finally, error reporting is not adequate with any IDE integration approach presented. In this
approach with Visual Studio, the compilation fails when an error is detected by Hyper/Net. To
analyse the error, the programmer has to check the “Output” tab in Visual Studio, where the
error message is printed. Error reporting should identify the origin of the error directly in the
decomposed source code. This error traceability requirement is another issue for future work.

This approach was developed with Visual Studio in mind but it also supported in
Sharpdevelop. Like Visual Studio, SharpDevelop still does not support the enhancements
proposed for an adequate integration, exhibiting the same behaviour when the project file is
written in the pre-compilation step. Nevertheless, if the output code file is open when the
project is built, SharpDevelop compiles the version of the file written by Hyper/Net and not
the one in memory in the IDE. This way SharpDevelop does not require closing the output
code file prior to compilation like Visual Studio does.

The support provided by Visual Studio and SharpDevelop is very similar. This subsection and
the previous one were separated according to our integration experiences and not on final
functionality. The details were presented in the context of each IDE where they were analysed
more precisely. Then, each approach was also tested on the other IDE but without focusing on
details.

7.3 Testing with MDSoC

Unit tests are a particular type of tests that address very specific code functionality. For
example, a unit test can check method returns based on different inputs. Unit tests are usually
implemented using code, frequently in the same language as the code which is being tested.
Functional tests also relate with code, but focus problems from the higher-level perspective of
requirements. Functional tests can also be created using the same language as the code they
test. Both kinds of tests are related with the problems that are posed by requirements and are
solved by code (among other artefacts). Functional tests address these problems directly and
unit tests address the details of particular solutions to these problems.

In MDSoC, tests can define their own artefact or can share the code artefact with the
application code. Both approaches are valid and feasible with Hyper/Net. In either case, tests
address the same concerns as code does.

The considerations presented in the two previous sections can also be applied to tests that are
implemented using source code. It is possible to decompose test methods into different
concerns (using Hyper/Net method composition) or separate different test methods in a
particular test class throughout these concerns (using partial types). It is also possible to
remove specific concerns keeping the remaining concerns adequately tested.

We explore two unit testing frameworks in the context of MDSoC: NUnit and Microsoft
Visual Studio Test Projects. NUnit [NUnit07] is an open source test framework. It supports
the coexistence of tests and code in the same .NET project, so with NUnit, tests can share
hyperslices with units from the code artefact. Nevertheless, tests are separated from the
remaining code by having to follow particular restrictions. For instance, test methods have a

81

NUnit attribute to classify them as such ([Test]) and must belong to a class that is also
classified with a particular NUnit attribute ([TestFixture]).

With NUnit, tests relative to a particular concern should be implemented inside the directory
for that concern. Test methods must belong to test classes and thus exist separately from the
remaining code in each concern. Test classes should usually be partial classes. Each partial
class of the test class should belong to a different concern and hold the test methods belonging
to that concern.

Methods that are composed using Hyper/Net should be tested from the perspective of each
concern. If the methods are composed using override, the tests can be performed by separate
test methods that are also composed using override. When two methods are involved, if the
concern containing the overriding method is removed, the tests for that method are also
removed. This way, the previously overridden method will now be part of the output code and
will be tested by a test method in its concern that is not overridden anymore.

When merged methods must be tested, the task can become more complex and may require
case by case analysis. Nevertheless, a general approach is still possible. Unit test methods
should test the isolated functionality of the method in each concern. Because of the effects of
composition these tests will possibly fail unless they are run while the containing concern is
isolated from the other concerns. This is acceptable if we define that the purpose of unit tests
is to test the local functionality of each concern at a low granularity. The results of
composition can be tested with additional tests designed for a particular set of compositions.
For instance, these can test the merged result of all methods or of particular combinations of
these methods. Nevertheless, the most adequate solution would adapt itself to the different
composition scenarios and cope with the removal and addition of concerns. Sometimes this is
possible using MDSoC composition for test methods, but not all the times. This is an issue for
future research.

Microsoft Visual Studio Test Projects were adapted from NUnit and are part of the Visual
Studio IDE. Contrary to NUnit, Visual Studio only processes tests that exist in specific test
projects, separate from the code projects. This is handled by creating the same directory
structure in the test project that exists in the application project. This way, the test and
application projects share the same hyperspace structure. The remaining approach described
for NUnit also applies to Visual Studio Test Projects. Even the attributes that need to be
applied to test methods and classes are similar.

Testing, in particular unit testing, is a valuable aid while creating projects using MDSoC. On
top of the standard benefits of testing, it can be used to validate the composed behaviour and
identify when local concern behaviour is affected by composition. To consolidate this unit
testing approach with MDSoC, the following examples also describe how unit tests were
applied to them.

7.4 Example: a Toll implementation

This example documents a simple development using MDSoC with .NET partial types and
Hyper/Net. The example takes place in the context of the business of motorway operation, in
particular tolled motorways. Some tolled motorways contain passing tolls where a fixed
amount is charged. Other tolled motorways contain entry and exit tolls which are used to

82

calculate and charge a fare at the exit toll. This example pretends to represent an exit toll in
the latter kind of motorway tolling system.

There are three main functional requirements for the exit toll that makes-up this example:

� Provide the necessary functionality to charge users based on the identification of an entry
toll.

� Keep track of the number of vehicles that passed the toll.

� Finally, to help avoid congestions, an extra percentage should be charged during
congestion periods.

This toll is implemented as a class library project that can be used as part of the software that
manages the tolls. From that external perspective there needs only be a class implementing a
method which receives the identification of an entry toll and returns the amount to be charged
(see Figure 8). The other two requirements are considered to be internal to the project, so they
do not need to expose properties or methods.

Figure 8. External perspective for the Toll class.

The three functional requirements are separated into different concerns of a Features
dimension. This means there will be a Features directory in the project, containing one
directory for each concern. The first requirement is implemented inside the directory for the
Charging concern. The second requirement is implemented by counting passing vehicles and
resides inside the directory for the Traffic Management concern. Finally, the third
requirement is implemented inside the directory for the Congestion Charging concern.

The Charging concern contains a partial Toll class. It provides the Toll class with a method to
calculate the amount that needs to be paid when arriving from any other toll (the
AmountFromOtherToll method in Figure 9 and Listing 8). For simplicity purposes this
method always returns the same value (5). The PassToll method uses the previous method to
calculate the value which is returned, but also increments a local variable (amountCharged)
containing the total amount received. Additionally this partial class provides a method to get
the total amount ever charged for the toll (TotalAmountCharged). This method is used by the
unit tests which are described further on.

83

Figure 9. Class diagram for the partial Toll class inside the Charging concern.

public partial class Toll

{

 private int amountCharged = 0;

 public int TotalAmountCharged()

 {

 return amountCharged;

 }

 public int AmountFromOtherToll(Toll otherToll)

 {

 return 5;

 }

 public int PassToll(Toll originToll)

 {

 int amountToCharge = this.AmountFromOtherToll(originToll);

 amountCharged += amountToCharge;

 return amountToCharge;

 }

}

Listing 8. Partial Toll class implementing the charging requirement (Charging concern).

All the functionality that implements the charging requirement is located in this concern.
Tracking of the total charged amount is very simplistic but it could evolve into a more
complex functionality, requiring a concern of its own. In this case the Charging concern could
be separated into two new smaller concerns.

The Traffic Management concern is also implemented as a partial Toll class. It also
implements a PassToll method which simply increments a local integer variable
(numVehiclesPassedThisHour) for each passing vehicle (see Figure 10 and Listing 9). This
method can only coexist with its equivalent in the Charging concern if they are composed.
This is done simply by applying a Hyper/Net MethodMerge attribute to the PassToll method.
The attribute defines a MethodMergeAction of Merge so the functionality of this method is
combined with the functionality of the same method in the Charging concern. The PassToll
method in the Charging concern will have a default priority of -1. The explicitly declared
priority of 0 for the method in the Traffic Management concern will make it run before the
one in the Charging concern. The return value for the composed method will be calculated
using an explicitly defined method: SumInts. As the PassToll method in the Traffic
Management concern always returns 0, the composed method will return the same result as
the Charging concern method. To keep up with the passage of time, a PassHour method has
to be invoked. It simply clears the vehicle counter (numVehiclesPassedThisHour variable).

84

Finally, a HourlyTraffic integer property provides read access to the vehicle counter and is
provided both for testing purposes as well as for use from the Congestion Charging concern.

Figure 10. Class diagram for the partial Toll class inside the Traffic Management concern.

public partial class Toll

{

 private int numVehiclesPassedThisHour = 0;

 public int HourlyTraffic

 {

 get { return numVehiclesPassedThisHour; }

 }

 public void PassHour()

 {

 numVehiclesPassedThisHour = 0;

 }

 private int SumInts(params object[] ints)

 {

 int res = 0;

 foreach (int i in ints)

 res += i;

 return res;

 }

 [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 0, "SumInts")]

 public int PassToll(Toll originToll)

 {

 numVehiclesPassedThisHour++;

 return 0;

 }

}

Listing 9. Partial Toll class implementing the vehicle counting requirement in the Traffic Management concern.

The Congestion Charging concern needs to apply an overcharge percentage to the return value
of the PassToll method, but only in case a threshold value for the hourly traffic is reached.
The most adequate composition mechanism for achieving this purpose is method bracketing.
In particular, it is used to apply an after method to the return result of the PassToll method.

To be able to bracket the PassToll method, the method itself must also belong to this concern.
This is achieved by introducing an empty PassToll method implementation (that simply
returns 0) to which a merge attribute is applied (see Figure 11 and Listing 10). The priority of

85

this merge attribute is not relevant as the method has no side-effects and is only implemented
to carry the bracket attribute. Nevertheless, the priority must be different from the priorities of
this method in the other concerns.

The bracket attribute identifies an empty method (Nil) for before, simply because Hyper/Net
bracket attributes must provide a before method. The implementation of congestion charging
is achieved with the after method (ApplyCongestionCharging). Because method bracketing is
applied after merging, the after method takes the return result of the composed PassToll
method. It then uses the HourlyTraffic property, from the Traffic Management concern, to
determine if a 100% congestion surcharge should be applied. This happens only when the
hourly traffic surpasses 100 vehicles. In this case, the composed PassToll return value is
multiplied by two. This calculates the value that is returned by the after method. It is also here
that a local variable (totalCongestionSurcharge) is incremented with the surcharge amount. In
case the hourly traffic is still below 100 vehicles, the composed PassToll return value is
returned without change. By using the HourlyTraffic property directly this concern has a
dependency on the Traffic Management concern. This situation has been discussed more
generally in previous Sections (6.2 and 7.2).

Recall that in the Charging concern a TotalAmountCharged method returns the total value
collected at a toll. By collecting a surcharge, the Congestion Charging concern is increasing
the total value and also needs to complement the behaviour of the TotalAmountCharged
method for correctness. This is done using merge (a MethodMerge attribute with a
MethodMergeAction of Merge) on a local TotalAmountCharged method that returns the total
surcharge value for the toll. The MethodMerge attribute defines that the composed result
should be the sum of the merged method results by defining the SumInts as the result merging
method. This way, the TotalAmountCharged method will return the normal charged value
plus any eventual congestion surcharges.

Figure 11. Class diagram for the partial Toll class inside the Congestion Charging concern.

public partial class Toll

{

 public int totalCongestionSurcharge = 0;

 private void Nil(MethodBase method, params object[] parameters)

 {

 }

 private object ApplyCongestionCharging(MethodBase method, object

returnValue, params object[] parameters)

 {

 if (this.HourlyTraffic > 100)

 {

 totalCongestionSurcharge += (int)returnValue * (2 - 1);

86

 return (int)returnValue * 2;

 }

 else

 return returnValue;

 }

 [HyperNet.MethodBracket(Nil, ApplyCongestionCharging)]

 [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 2)]

 public int PassToll(Toll originToll)

 {

 return 0;

 }

 [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, 0, "SumInts")]

 public int TotalAmountCharged()

 {

 return totalCongestionSurcharge;

 }

}

Listing 10. Partial Toll class implementing the congestion charging requirement (Congestion Charging concern).

To validate the behaviour of the Toll class, a respective test project was also created. A
separate project was required because we used the Microsoft Visual Studio unit testing
framework (see Section 7.3 for details). This test project is also organized using the same
MDSoC dimension and concern directories as the example itself. Test methods exist inside
the three concern directories. Each test method implements a unit test as seen from the
perspective of the concern. For instance, a test method in the Charging concern
(TestInitCharging in Listing 11) checks if a newly created toll does not have any charged
amount. Another test method in this concern (TestCharging in Listing 11) checks if the total
charged amount is incremented by each vehicle passage.

[TestMethod]

public void TestInitCharging()

{

 Toll toll1 = new Toll();

 Assert.AreEqual(toll1.TotalAmountCharged(), 0);

}

[TestMethod]

public void TestCharging()

{

 Toll toll1 = new Toll();

 Toll toll2 = new Toll();

 toll1.PassToll(toll2);

 int charged1 = toll1.TotalAmountCharged();

 Assert.IsTrue(charged1 > 0);

 toll1.PassToll(toll2);

 int charged2 = toll1.TotalAmountCharged();

 Assert.IsTrue(charged2 > charged1);

}

Listing 11. Test methods in the Charging concern.

One of the Traffic Management concern test methods (TestInitForTraffic) checks if a newly
created toll has no hourly traffic after initialization. Another test method in this concern

87

(TestHourlyTrafficCounting) simply tests if three consecutive vehicle passages are counted.
Finally, another test method (TestPassHour) checks if, after the PassHour method is invoked,
a toll that had counted vehicles is reset back to a zero hourly traffic value. The tests in this
concern do not need any composition with the tests in the Charging concern because no result
values of methods merged between these two concerns are affected by both concerns. The
Charging concern determines the return value of the PassToll method while the Traffic
Management concern only uses the PassToll method to increment its own counter.

[TestMethod]

public void TestInitForTraffic()

{

 Toll toll1 = new Toll();

 Assert.AreEqual(toll1.HourlyTraffic, 0);

}

[TestMethod]

public void TestHourlyTrafficCounting()

{

 Toll toll1 = new Toll();

 Toll toll2 = new Toll();

 toll1.PassToll(toll2);

 toll1.PassToll(toll2);

 toll1.PassToll(toll2);

 Assert.AreEqual(toll1.HourlyTraffic, 3);

}

[TestMethod]

public void TestPassHour()

{

 Toll toll1 = new Toll();

 Toll toll2 = new Toll();

 toll1.PassToll(toll2);

 toll1.PassToll(toll2);

 toll1.PassToll(toll2);

 Assert.AreEqual(toll1.HourlyTraffic, 3);

 toll1.PassHour();

 Assert.AreEqual(toll1.HourlyTraffic, 0);

}

Listing 12. Test methods in the Traffic Management concern.

The Congestion Charging concern contains a single test method that checks if passing a toll
without congestion is cheaper than passing it when the congestion threshold has been
surpassed.

[TestMethod]

public void TestCongestionCharging()

{

 Toll toll1 = new Toll();

 Toll toll2 = new Toll();

 int chargedWithoutCongestion = toll1.PassToll(toll2);

 Assert.IsTrue(chargedWithoutCongestion > 0);

88

 for (int i = 0; i < 200; i++)

 {

 toll1.PassToll(toll2);

 }

 int chargedWithCongestion = toll1.PassToll(toll2);

 Assert.IsTrue(chargedWithCongestion > 0);

 Assert.IsTrue(chargedWithCongestion > chargedWithoutCongestion);

}

Listing 13. Test method in the Congestion Charging concern.

The tests in the Charging and Congestion Charging concerns might use the actual price values
returned by the PassToll method. In such case, some tests methods might also have to be
composed, because the price values are affected through method compositions by these two
concerns.

7.5 Example: the Expression SEE

Section 3.3 presented the expression SEE example that is used throughout most MDSoC
literature. This example was also implemented using Hyper/Net. It was implemented
according to the same approach as described in the original literature, in particular [Tarr01],
which is the most detailed. Implementing the most relevant example from MDSoC literature
using partial types and Hyper/Net is one form of validation of our MDSoC approach.

The requirements and design artefacts of the Expression SEE have already been addressed in
[Tarr99] and [Tarr01]. The hyperspace for the expression SEE will have only two dimensions,
the object and the Features dimensions. We will be working from the perspective of the
Features dimension.

The Features dimension is materialized by a Features directory in a .NET class library project
that implements the example. Inside, there is a directory for the each concern. One such
directory contains the Kernel concern. It is a basis concern where each class is declared,
related to others through inheritance and offers basic functionality like constructors. The
classes in the Kernel concern also contain necessary private variables. Figure 12 provides the
class diagram that depicts the class hierarchy of this example along with the Kernel concern
methods and variables in each class.

89

Figure 12. The class hierarchy in the Kernel concern of the Expression SEE example.

As defined in the original example, Expression is an abstract super-class for all the other
classes. The Kernel concern defines the class hierarchy of this example, so, the remaining
concerns do not need to define any inheritance relationships. Number and Variable classes
extend Expression with the expected functionality. In the case of Number, it keeps track of its
value, offers an accessor method24 (GetValue) and a specific constructor. Binary operators
share many characteristics, namely containing two different expressions, one on the right of
the operator, another on its left. These are captured by the BinaryOperator class which
derives directly from Expression. All of the three specific binary operator classes (Plus, Minus
and Assignment) inherit their Kernel concern functionality from BinaryOperator.

All the classes declared in the Kernel directory (concern) are defined as partial classes so they
can be further enriched in other concerns.

The Display concern focuses on printing expressions on the screen. This functionality is
provided by a Display method in the classes of the expression hierarchy. This concern takes
advantage of the partial types MDSoC approach. Each class of the hierarchy has a partial in
this concern. These are represented in Figure 13.

24 We use accessor methods instead of properties because Hyper/Net only allows the composition of methods
and there might be a need to compose these accessors.

90

Figure 13. Class diagram for the Display concern.

Each of these partials implements a Display method, except for the Plus, Minus and
Assignment classes. These use the Display implementation from their parent class
(BinaryOperator) and only provide a specific helper method, getOperandRepresentation, that
it requires. The Display method simply prints a representation for the expression on the
screen. For example, for a Number object, it prints its integer value.

The partial classes in this concern can define no class hierarchy. Nevertheless, there is a
dependency on the particular class hierarchy implemented in the Kernel concern. The Plus,
Minus and Assignment classes rely on the Display method implementation from the
BinaryOperator class. If BinaryOperator was removed as the parent of any of these three
classes these would lack a Display method implementation. The need for particular parts of
the class hierarchy in this concern can be expressed by defining inheritance only for the
involved partial classes. In this case, by having the Plus, Minus and Assignment classes
extend the BinaryOperator class. The remaining class hierarchy can be changed in the Kernel
concern without affecting this concern. But, if these required inheritance relationships are
changed in the Kernel concern, they will conflict with the inheritance directives in this
concern and result in a partial type compilation error.

The Evaluation and Check concerns are implemented much in the same way as the Display
concern. Each adds a new method to the classes, Eval and Check respectively (see Figure 14
and Figure 15).

91

Figure 14. Class diagram for the Evaluation concern.

Not every class has a partial implementation in each concern. For example, there is no way to
implement common binary operator evaluation. So the Eval method is only implemented in
BinaryOperator child classes and there is no partial for the BinaryOperator class in the
evaluation concern.

Another case occurs in the Check concern. Check functionality for binary operators is
implemented in the parent class and inherited by the Plus and Minus child classes, without
any additional implementations. The Assignment class overrides the binary operator Check
method and implements an additional check because the left side expression must always be a
variable, as only variables can be assigned to.

92

Figure 15. Class diagram for the Check concern.

Up to this point, this example did not require the use of Hyper/Net and was fully supported by
the partial types approach. Also recall that up to this point the original example was easily
implemented with OOP (see Section 3.3). The major advantages of using MDSoC here, in
particular the partial types approach, is that the programmer is able to create and evolve each
concern separately. Furthermore, it is possible to mix-and match concerns. To create a version
of this project without either one of the Evaluation, Check or Display concerns it is only
required to remove the respective directories from the project and build it.

[Tarr99] and [Tarr01] propose an extension to the Expression SEE that was addressed (in
Section 3.3) by adding a Style Checking concern. This new concern should offer its
functionality through the same Check method that was introduced in the Check concern. This
enables existing code that uses expression checking to do style checking without needing to
be changed.

At this point we find a major limitation with the partial types approach. If we declare another
partial class for any of the implemented classes, offering another implementation for the
Check method, the compiler will detect a syntax error. This happens because the Check
method cannot be defined twice. Remember that each partial class is composed into a unique
class in an additive fashion. All of the elements declared in the partial classes will belong to
the resulting composed class, which cannot have duplicate method definitions. This is where
Hyper/Net method composition is required.

A new Style Check concern is created, providing partial implementations for the Check
method (see Figure 16). As a simplification of the original style check feature, this Style
Check concern simply contains a check for the size of the name of variable elements which
must be smaller than 5 characters. This way, this concern contains a default Check
implementation for the Expression class, which always returns true. This default behaviour is
overridden in the binary operator, to make sure the expressions on each side are correct.
Finally, it is also overridden in the Variable class, to check if the size of its name is smaller
than 5 characters.

93

Figure 16. Class diagram for the Style Check concern.

Each of the Check methods in the Style Check concern has a MethodMerge Hyper/Net
attribute declaration applied to it (see Listing 14). This defines how these methods are
composed with their counterparts in the Check concern. The attributes define a method merge
action of merge (instead of override) so the functionality of existing methods coexists with the
new functionality implemented in this concern. The -10 priority level used, by being smaller
than the -1 default priority, defines that these methods are invoked after the existing Check
methods from the Check concern. Finally, the MethodMerge attribute also identifies a result
merging method, mergeCheckResult. This method will only return true, if all the composed
methods return true.

public partial class Variable

{

 [HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, -10,

"mergeCheckResult")]

 public override bool Check()

 {

 return this.var_name.Length < 5;

 }

}

Listing 14. The Variable partial class in the Style Check concern.

The Style Check concern originally did not contain an explicit implementation of the Check
method for the Number class. This has interesting consequences when this concern is
composed with the existing Check concern, which explicitly defines a Check method for the
Number class. When the two check concerns are composed together, the Check method
defined in the Check concern, for the Number class, overrides the merged implementation
provided by the Expression class. This way, the resulting Check method for the Number class
is simply the Check method from the Check concern. This is not an issue for this particular
example because both the merged Check method for the Expression class and the Number

94

Check method in the Check concern always return true. If the Style Check concern Expression
Check method did not always return true, then there would be a composition issue. In such
case, the Style Check concern should also implement a Check method for the Number class.
To avoid such issues in the evolution of the Style Check concern we already implemented the
Check method for the Number class. This is an example of an important MDSoC design need.
When relying on inherited behaviour for a specific concern, it is necessary to check if the
inherited functionalities are not overridden in other concerns.

In terms of implementation, the style check feature rules from the original example could be
implemented in much the same way as we implemented the check for the variable name
length. But, by doing so, this example would only become more complex, without adding any
new composition or usage scenarios.

Another feature for the Expression SEE, that can exemplify more Hyper/Net composition
attributes, is logging method entries and exits for all method calls. This feature was proposed
and exemplified (using Hyper/J) by [Tarr01]. [Tarr01] uses the bracket composition to trigger
the invocation of logging for the entry and exit of all methods in the expression class
hierarchy. This feature is also implemented with Hyper/Net using bracket composition.

First, a new Logging concern is introduced. This concern contains a partial class definition for
the Expression class (see Figure 17). This partial class introduces two new methods that will
be used for logging: methodEntryLog and methodReturnLog. These are protected static
methods that respectively implement the Hyper/Net delegate signatures for before
(BeforeMethod) and after (AfterMethod) methods. Static methods are lighter and more
appropriate for the logging task than instance methods. But Hyper/Net bracket composition
requires that the before and after methods are available as class instance members. This is
why the entryMet and exitMet method delegates are introduced. They simply work as method
reference holders for the static methods, making them available for invocation as class
instance members. Finally, the GetLogPrefix is only a helper method used by both logging
methods to write a logging prefix with the current date, time and the current thread identifier.

Figure 17. Class diagram for the Expression class in the Logging concern.

Relying on the inheritance hierarchy defined by the Kernel concern the logging methods
become available to all other classes. These methods can then be used with a Hyper/Net
bracket attribute to apply logging to the methods in each class (see Listing 15 for an example).
This bracket attribute has to be explicitly applied to all the methods in all the classes of the
hierarchy. Furthermore, to be able to declare the bracket attribute, there must be a declaration
of these methods in the partial classes of the Logging concern. Each of these method
declarations must be composed with the respective methods in the other concerns using

95

appropriate merge composition attributes. Listing 15 shows the two composition attributes
used to bracket the Check method in the Assignment class.

[HyperNet.MethodMerge(HyperNet.MethodMergeAction.Merge, -20)]

[HyperNet.MethodBracket("entryMet", "exitMet")]

public override bool Check()

{

 return true;

}

Listing 15. Bracket attribute declaration for the logging feature.

Hyper/J uses a more powerful matching mechanism (based on regular expressions) to define,
with a single composition statement, that all the methods in all the classes are bracketed.
Achieving such expressivity with Hyper/Net is an issue for future work (see Section 10.3).

Another feature proposed for this SEE in [Ossher99] is caching. Each expression should
cache the result of evaluation for future usage. Cache invalidation would also be an issue for
this concern. This could be implemented if the Eval method was bracketed with methods such
that the cache contents were tested to check if they were usable. If so, instead of evaluating
the expression, this result should be returned. Yet, this would require an enhancement to
Hyper/Net’s bracket attribute to provide around functionality (another issue for future work).

The Expression SEE example was also tested using the MDSoC unit testing approach
presented previously in Section 7.3. This was done using a Microsoft Visual Studio .NET test
project that is organized using the same hyperspace dimensions and concerns as the example
itself. In terms of the object dimension of tests, there is a single test class that implements
different test methods and a test initialization method. Independent concerns like Display and
Evaluation implement their own specific test methods in a partial test class. There are no
conflicts as these test methods are also independent.

To test concerns that have methods which are composed together, like the check concerns, the
test project also relies on Hyper/Net method composition. The tests for the Style Check
concern allow the assignment of two binary operator expressions. But this is not allowed in
the tests for the Check concern. A TestCheck_assign_two_binOp test method does this test
accordingly in each concern. When the tests for each concern are run separately, by removing
the other check concern from the tested and test projects, all unit tests pass. To test the
composed functionality of both check concerns appropriately the
TestCheck_assign_two_binOp test method has to be composed itself. The result of merging
the functionality of the Check concern Check methods is that the strictest checks always
apply. So, in this case, the assignment of two binary operator expressions is invalid. This is
tested by applying an override composition attribute to the TestCheck_assign_two_binOp test
method in the Check concern, which is the less strict test.

Hyper/Net composition is further used in the test project to merge test initialization methods
that exist in different concerns. In this case, there was need to initialize two additional
variables in the Style Check concern. This is done using the same test class initialization
method signature, which has to be composed with the initialization method in the Kernel
concern. These methods are composed using a merge composition attribute that is applied to
the test class initialization method in the Style Check concern.

Finally, when a concern is removed from the tested project it also has to be removed from the
test project. A different test approach that is possible using NUnit (also presented in Section

96

7.3) allows tests to coexist with code in the tested project. That approach has the advantage of
simultaneously removing the code and tests when a concern directory is removed.

7.6 Conclusions

MDSoC hyperspace dimensions and concerns are supported on a very simple directory
structure. This structure can easily be changed by moving files between concern directories.
.NET partial types are used to place class members and other units into the appropriate
concern directories. Additionally, Hyper/Net provides override, merge and bracket method
composition using two different attributes that are applied to methods: MethodMerge, for
overriding and merging, and MethodBracket, for bracketing methods.

Both the .NET partial types approach and Hyper/Net are versatile and allow creating
hyperspaces from scratch or refactoring existing projects into hyperspaces. As for error
reporting, with partial types, the .NET compiler allows tracing errors back to specific points
inside the adequate MDSoC concerns. Hyper/Net is more limited in terms of error reporting.
It is possible to develop normally with .NET IDEs using the proposed approaches. Still,
Hyper/Net has some specific IDE integration issues that should be addressed as part of future
work. When using any of the two approaches, the developer should take special care while
introducing inter-concern dependencies. Normal .NET compilation and IDEs will also help in
this regard.

.NET applications developed using MDSoC can be tested like other .NET applications. Tests
address the same concerns as code does. So, tests implemented using code can be part of an
MDSoC hyperspace created using Hyper/Net. These tests benefit from the advantages of
MDSoC and provide testing benefits that are specific to MDSoC, like being able to test local
concern functionality at low granularities and supporting mix-and-match.

Finally, using a very simple example, centred on motorway tolls, we provide a realistic usage
scenario for merge and bracket composition and also exemplify dependencies between
concerns. The SEE Expression example is a bit more complex, with its own class hierarchy,
and provides an important evaluation scenario for Hyper/Net as it was also used as an
example for Hyper/J. This example provides more diversified usage scenarios of all
Hyper/Net composition attributes.

97

Chapter 8

Hyper/Net implementation

Hyper/Net is only a prototype implementation. It was created with the purpose of overcoming
some limitations of the partial types native MDSoC approach. These limitations were
identified while we were implementing the two MDSoC examples described in Sections 7.4
and 7.5 using only partial types. Hyper/Net successfully overcomes these limitations, as seen
in Chapter 7. Implementing and using Hyper/Net also served as a mean to deepen our
intimacy with MDSoC usage with .NET programming.

There were no analysis or design stages prior to Hyper/Net implementation. This chapter
provides some analysis and design material from a reverse-engineering perspective. Refining
this analysis is an issue for future work. One case that requires such refinement will be
identified when future versions of Hyper/Net separate composition metadata from the code
itself. In our current approach, composition meta-data processing and extraction is not
separated from composition execution. If these two concerns had been separated from the
start it would be easier to evolve Hyper/Net with this future work requirement. This is just an
example of how Hyper/Net code may be inadequately organized. Furthermore, Hyper/Net it is
not optimized or even fully tested.

Yet, we acknowledge the value of the Hyper/Net implementation. So, this chapter provides an
MDSoC hyperspace analysis of Hyper/Net, drilling down to the details allowed by each
dimension. This task is simplified as Hyper/Net is itself implemented using a partial types
MDSoC hyperspace. We emphasize that this hyperspace was not carefully designed and
originated as an organization attempt of our early Hyper/Net plain OOP implementation. This
should not be used as a reference MDSoC hyperspace. Still, the analysis made of this
hyperspace is itself an interesting approach. The versatility of the MDSoC perspective
simplifies the documentation process, allowing details about the implementation to be
provided in smaller, partly independent groups contained in hyperslices.

The first section presents a procedural perspective of Hyper/Net. This is equivalent to the
analysis of a time dimension, yet it has no physical implementation with Hyper/Net. The
second section focuses the physical architecture of Hyper/Net. It starts by detailing the
MDSoC hyperspace implemented by Hyper/Net source code. The requirements realized by
Hyper/Net are presented in the context of each concern of this hyperspace. The second section
goes on to present the two separate projects that together implement Hyper/Net. One is a class
library that needs to be included in .NET MDSoC projects that use Hyper/Net. This class
library is analysed in detail from the perspective of its two concerns. The other one, the

98

Hyper/Net console application, is first presented from the perspective of the object dimension.
This provides an overview of the code and a classic design presentation. Then, the details
about each element of the application are provided from the perspective of functional
dimensions. Here, each object is analysed in detail but only for a particular concern.

8.1 The process

As seen in Section 6.2, Hyper/Net works as a pre-compilation tool that processes source code.
This way, Hyper/Net works before the compiler, transforming source code. This process is
depicted in Figure 18 and described in detail below.

Figure 18. Illustration of a procedural view of Hyper/Net.
Hyper/Net starts by processing a project file to load source code files (1). It ends by writing a single composed

source code file, ready for .NET compilation (8).

Hyper/Net receives as input an MSBuild project file25. It uses the project file to identify
source code files that need to be processed by Hyper/Net prior to .NET compilation (see
Figure 18, Step 1). These files are identified in the project as embedded resources, instead of
compilation resources. This is how Hyper/Net distinguishes files it should process from files
directly destined for the compiler.

25 MSBuild project files are build-files, written in XML. Among other things, they contain information regarding
the source code files that are involved in the project. For instance, it identifies the files that need to be compiled
to produce binary output for the project. These are marked as compilation resources.

Project File

Source code using B

using A

using C

namespace

SeaWorld

 using B

using A

using C

Pre-processing before Parsing

Parse
AST

 using B

using A

using C

partial Seal

partial Seal

AST

 using B

using A

using C

class Seal

Combine namespaces and partial types

AST

...

class Seal

void Play()

LogActivity()

[Bracket Log]

AST

...

class Seal

void Play()

LogActivity()

LogActivity()

AST

...

class Seal

void Play()

void Play()

[Merge]

[Merge]

Merge and override methods Bracket methods

Write output
code

namespace

SeaWorld

namespace

SeaWorld

namespace

SeaWorld

namespace

SeaWorld

namespace

SeaWorld

namespace

SeaWorld
namespace

SeaWorld

namespace

SeaWorld

namespace

SeaWorld

1

2

3

4

5

6 7

8

99

The identified source code files are read and their contents concatenated into a single body of
source code (see Figure 18, Step 2). This is equivalent to reading the source code from a
single file, except that a few ordering impositions of .NET languages are not maintained. For
instance, source code files in .NET languages must have all using/import directives at the
begging of the file. To abide to this rule, and support parsing the code just read, there must be
an additional pre-processing step. It consists of moving all using/import directives to the
beginning of the code (see Figure 18, Step 3).

Having made the body of source code valid, Hyper/Net then uses the NRefactory parser to
produce an AST (abstract syntax tree) for the code (see Figure 18, Step 4). This parser
produces the same AST structure from C# and VB.NET code. This way Hyper/Net supports
source code in any of these two languages. After this step, all processing is done using the
AST instead of the textual format of the source code. This is depicted in Figure 18 through the
“AST” labelled box on top of the code blocks of each stage.

Following the parsing stage there is a composition preparation stage (see Figure 18, Step 5). It
is in this stage that Hyper/Net merges partial types into a single type declaration. Before
partial types can be merged, a similar merge has to be done with namespaces. Recall that the
parsed source code is a concatenation of source code from different files. With the exception
that using/import directives have been moved to the beginning of the code body. The same
namespace can occur time and again in the concatenated source code. This is valid in .NET
languages, but makes partial type merging more difficult as partial types would have to be
matched across a wider scope. This way, the contents of different nodes for the same
namespace are brought together into a single namespace node. This step makes partial types
merging easier, as partial types can be searched for under the same namespace AST node26.
Partial types are fully merged. This means that type references (inheritance and
implementation of interfaces), attribute declarations and all partial type member declarations
are brought together. This step has a purely additive nature and is limited to the class and
interface level. Composition between class members is done in the next step. Both
composition preparation procedures (merging namespaces and partial types) involve iterating
through the AST.

The next stages of Hyper/Net processing are the core of our work. Merge and override
composition is done in the same step (see Figure 18, Step 6). The AST is iterated through
once again, this time searching for repeated instances of the same method. Methods are
matched by signature, that is, the name, parameter types and return type must all match. As
partial types were previously merged, the search for matching methods is local to each class
node. At this point, any matching methods are searched for Hyper/Net attributes to determine
the correct course of action. If one (and only one) of the methods has an override attribute the
remaining methods are removed. Otherwise, the methods must define merge composition.
Merge composition consists on renaming the existing methods and creating a new ‘super-
method’, the merged method, that will call each of the previous methods. The priorities
defined in the merge attributes that are applied to each method are used for determining the
order by which the methods are invoked. The result of each invocation will be kept in a local
variable inside the merged method. At the end of the invocation process an optional result
merging method is invoked. This method, which must be defined as a local class method,
takes as arguments the list of results of each method invocation and returns only one value. Its
return value is returned by the merged method. The result merging method can be defined as
an argument of any of the merge composition attributes.

26 Recall that partial types cannot span different namespaces. Two equal partial type signatures in different
namespaces are considered as different types.

100

Bracket composition searches the AST directly for bracket attributes in methods (see Figure
18, Step 7). Once a bracket attribute is found, the method starts to be changed. First, the
before method is invoked from the beginning of the existing method. The before method
receives as arguments the original method meta-information and arguments. Then, prior to the
original method return statement, the after method is invoked. The after method receives the
same information as the before method and also the return result of the original method body.
Existing return statements are replaced by the return of the after method. When the return
statement expressions are replaced by the after method invocation, these expressions are
passed as an argument to the after method.

At this point the code in the AST is ready for compilation. This way, Hyper/Net outputs the
composed code in the language of choice (see Figure 18, Step 8), either C# or VB.NET. The
code is output as a single source code file which can be compiled.

To compile Hyper/Net composed code it is not necessary to use a .NET 2.0 compiler. Instead,
a .NET 1.0 or 1.1 compiler can be used. This happens because the partial types defined in the
source code are processed internally by Hyper/Net, after the parsing stage, to facilitate the
composition phases. As a result, even though partial types are used in Hyper/Net’s MDSoC
source code, the compiler used with code resulting from Hyper/Net composition needs not be
aware of these partial types, because Hyper/Net already transformed them into complete
types.

8.2 Hyper/Net internal architecture

Hyper/Net has itself been implemented using the partial type MDSoC approach presented in
Section 6.1. Hyper/Net works as a command line tool, taking as argument a project file, which
identifies the source code to be composed, and the output file path to write the composed code
to. The command line tool is implemented using a Windows console application .NET project
written in C#. Prior to using the command line tool, MDSoC projects that use Hyper/Net may
need to use composition attributes. These attributes are declared in a different .NET project
which is a class library .NET project, also in C#. This project needs to be referenced by any
project which use Hyper/Net composition attributes. The Hyper/Net console application
project also depends on the attribute class library and so, it also references it.

The hyperspace defined by Hyper/Net has concerns that are divided between these two
different projects. Furthermore, the two different architectural concerns that are separated by
these projects can be seen as populating a project dimension in the Hyper/Net hyperspace.

HyperNet

Hyper/Net Console Application
project

HyperNet.Attributes

Hyper/Net Composition
Attributes class library project

Figure 19. Hyper/Net viewed from the project dimension perspective.

Up to this point two Hyper/Net MDSoC dimensions have been presented. The first is the time
dimension with the procedural perspective presented in the previous section. This dimension
does not have a physical implementation. On the contrary, the project dimension depicted in

101

Figure 19, which is the second dimension, is at the top level of the physical decomposition of
Hyper/Net.

These two projects were internally modularized using the partial types MDSoC approach. The
hyperspace structure implemented in these two projects is represented in Figure 20. Along
with the Object dimension, it is made up of two functional dimensions:

� Features: This dimension contains all concerns that are not specific to the composition
attributes introduced by Hyper/Net. It contains general features like input/output handling,
parsing and some related features.

� Language Features: The second dimension is populated by concerns that are specific to
the language elements introduced by Hyper/Net. It contains specific features regarding
Hyper/Net attribute-based language extensions. It is the only dimension present in the
attributes project where it contains declarations for these concerns. In the console
application project, these concerns are populated with the implementation that processes
the respective Hyper/Net composition language features.

Figure 20. Representation of the MDSoC hyperspace used for Hyper/Net.

We now look at the concerns of the Features dimension, one by one, presenting the
requirements addressed by each concern:

� Flow Control

o Handles and validates command line arguments.

o Invokes different processing steps in the appropriate order. Processing steps are
factored into other concerns in this and the Language Features dimension.

� Input

o Reads project files.

o Processes project files to determine source code files.

o Reads the source code files.

� Kernel

Language Features

Bracket

Merge

Objects

AfterMethod

BeforeMethod

MethodBracket

MethodMergeResult

MethodMergeAction

MethodMerge

SourceCode

MainClass

F
lo

w
 C

o
n
tr

o
l

In
p
u
t

K
e
rn

e
l

O
u
tp

u
t

P
a
rs

e
 P

re
p
a
ra

ti
o
n
s

P
a
rs

in
g

N
a
m

e
s
p
a
c
e
 C

o
m

p
o
s
it
io

n

P
a
rt

ia
l
T

y
p
e
s
 C

o
m

p
o
s
it
io

n

Features

102

o Contains the core fields of each class and appropriate manipulation methods and
constructors.

� Output

o Provides a way to get source code that is held in memory in string format or is
generated from a parsed AST.

o Is able to write the required output files when invoked by other concerns. For
instance, it is used to write the final composed code file and temporary code files
used in debugging scenarios.

� Parse Preparations

o Moves namespace import/using directives from the middle of a textual body of
code to its top.

o Should eventually do other preparations needed to support parsing the results of
merging a set of different code files into a unique string.

� Parsing

o Can parse code in a textual form. Generates an AST that can be manipulated
programmatically.

� Namespace Composition

o Provides a way to merge all units in an AST, which belong to the same
namespace, under the same namespace node.

� Partial Type Composition

o Provides partial type merging. This implements partial type composition like the
.NET compiler, so it only does additive merging at class and interface level. After
this, there can be repeated methods inside classes. This is an issue for the Merge
concern in the Language Features dimension.

The Language Features dimension only contains two concerns but these address several
related requirements:

� Bracket

o Provides attributes that can be used to declare methods which should be bracketed
in MDSoC programs.

o Searches an AST for methods that should be bracketed.

o Extracts bracketing information from these methods.

o Uses bracketing information to apply bracketing, transforming the AST.

� Merge

o Provides attributes that can be used to declare methods which should be merged or
override others in MDSoC programs.

103

o Searches an AST for methods that should be merged or override others.

o Extracts merging information from these methods.

o Searches for all methods that match a particular method which should be merged
or override others.

o Determines if the merging information is valid for a set of matching methods.

o Uses the merging information to merge the methods involved or have a method
override all the others. This is done over the AST, changing the AST.

Curiously, if the Language Features dimension is removed, Hyper/Net implements a pre-
compilation tool that merges partial types into complete types. It would be possible to use
such tool to support partial types with a .NET 1.x compiler. This is an example of the
capabilities of mix-and-match that are made possible by MDSoC. These have also been
address as part of the examples of Chapter 7.

8.2.1 Composition attributes class library

This class library implements the first requirement presented for the Bracket and Merge
concerns. For the Bracket concern, it is implemented with the declaration of the
MethodBracket attribute and, for the Merge concern, with the declaration of the MethodMerge
attribute. These are the attribute types that can be applied to compose methods in .NET
MDSoC projects. By populating only these two concerns, this project exists only in the
Language Features dimension of the Hyper/Net hyperspace. This is due to the fact that all the
remaining features are already defined as part of the .NET languages so do not need to have
any specific declarations provided by Hyper/Net.

Initially, these two attributes were declared inside the Hyper/Net console application project.
This meant that each MDSoC project created using Hyper/Net would have to reference the
entire Hyper/Net application. This class library was created as a refinement to this initial
solution. Now, the class library contains exclusively the Hyper/Net code units that are
publicly required and is the only binary that needs to be referenced from .NET MDSoC
projects.

The two Language Feature dimension concerns in this project are physically decomposed.
This way it is trivial to analyse the implementation of these concerns in their decomposed
form. The code for each concern is already isolated, so it can be directly analysed without
leaving the context of a particular concern. It is also possible to focus part of the design
artefact of each concern using a class diagram depicting a single concern. Such a class
diagram can be obtained directly in an IDE like Visual Studio by removing the remaining
concerns from the project and generating a class diagram.

This project is analysed for the design and code artefacts in this fashion. The same approach
will be taken for the concerns implemented in the Hyper/Net console application project in
the following subsection.

104

Language Features – Bracket

The Bracket concern defines the MethodBracket attribute (see Figure 21). It is used to declare
bracket composition for a particular method it is applied to.

Figure 21. Class diagram for the Bracket concern in the Hyper/Net attributes class library.
The respective source code can be found in Appendix - I.1.1.

The MethodBracket attribute defines two methods: the before and after methods. These can be
identified using one of the two attribute constructors. The first, and the most adequate one,
uses method delegates to identify the before and after methods. The second constructor uses
method names instead. Still, during runtime, the methods identified by these strings must
match the delegate types. We will see how this is implemented by Hyper/Net in the next
subsection, when the Bracket concern is analysed for the console application project.

Using the delegate approach is more adequate because type checking is done during
compilation instead of runtime. Nevertheless, because the string approach was easier to
implement and with the purpose of prototype implementation simplicity, only the methods
passed as strings are taken into account. The next subsection describes how bracket
composition is implemented using the string representations.

There are two different delegates, one for the bracket before method – BeforeMethod delegate
– and another for the after method – AfterMethod delegate. The BeforeMethod delegate
provides before methods with a MethodBase object (the method field of the BeforeMethod
delegate in Figure 21) which contains information about the method being bracketed.
MethodBase is a native class from the .NET framework and is located in the
System.Reflection namespace. It is the standard way of providing information about methods
and constructors in .NET. This delegate also provides the parameters passed to the bracketed
method as a parameter object array (the parameters field in Figure 21).

The AfterMethod delegate provides the same information as the BeforeMethod delegate along
with an object containing the return value that would originally be returned by the bracketed
method (the returnValue field in Figure 21). The return value of this delegate will be the
actual return value of the bracketed method.

105

Language Features – Merge

The Merge concern defines the MethodMerge attribute (see Figure 22). It is used to declare
merge or override composition between methods with the same signature (method name
included).

Figure 22. Class diagram for the Merge concern in the Hyper/Net attributes class library.
The respective source code can be found in Appendix - I.1.2.

This attribute has four different constructors, each providing a different level of expressivity.
The simplest constructor takes only a MethodMergeAction argument, initializing the
mergeAction field. MethodMergeAction is an enumerate that distinguishes between override
composition and merge composition. In override composition, no other MethodMerge fields
are used, even if they are initialized. In fact, override composition should be supported using a
different attribute. Merge composition requires more details to be provided, has different
requirements for usage and the respective validation differs from override composition. Other
MDSoC implementations provide separate constructs for merge and override as seen in
Chapter 5. This is a design flaw in Hyper/Net that should be corrected as part of future work
(see Section 10.3). Even though the remaining fields are not used in override composition
when using this first (single argument) constructor, in both override and merge composition,
they are initialized with defaults. The priority is set to -1 and there is no mergeResult (a
MethodMergeResult delegate) or mergeResultByName string to identify the method used for
merging the results of involved methods. This constructor should only be used for override
composition or for only one method from a set o matching method in merge composition.

A second attribute constructor also takes as argument the priority level for merged methods.
Hyper/Net requires that all merged methods have a different priority level. This imposition
exists because of a Hyper/Net implementation detail that can be found in the Merge concern
of the Hyper/Net console application project. A .NET SortedList object is used to hold data
regarding the different methods identified by these attributes. SortedList objects do not allow
duplicate keys and the priority field is used as a sorting key. More implementation details are
provided in the next subsection.

Finally, the two remaining constructors also define a MethodMergeResult delegate that
identifies a method used to merge the return values of the merged methods. These
constructors should be used with methods that return a type. The first constructor of these two
uses the typed method delegate directly, storing it in the mergeResult field. The
MethodMergeResult delegate receives the set of return results from merged methods as an
object array (resultsToMerge) and returns an object with the computed return value. The
second constructor of these two uses a method name (a string), storing it in the

106

mergeResultByName field. The method identified by the string must match the delegate type.
Like with the MethodBracket attribute, for the purpose of prototype implementation
simplicity, only the result merging method passed as a string (mergeResultByName) is used.

8.2.2 Command line application

The Hyper/Net command line application is implemented as a C# Console Application
project. With the exception of two requirements, which are implemented by the composition
attributes class library project, this project implements the requirements that populate the
Hyper/Net MDSoC hyperspace.

First off, we analyse the object architecture of this project providing a global perspective of
the Hyper/Net internal architecture. Then, the Features and Language Features dimensions
perspectives are explored further, as each concern is detailed in terms of implementation.

Figure 23. Class diagram for the complete Hyper/Net console application.

The application class diagram in Figure 23 depicts the perspective of the object dimension.
The MainClass class provides the entry point (Main method) that processes command line
arguments and takes it from there. Most of the work done is triggered from the Run method
which will be detailed further on. The MainClass also provides implementation for some of
Hyper/Net’s input and output requirements.

The SourceCode class abstracts details like which parser is used or how it is used. Upon
construction, it takes as arguments a string of code along with the indication of the language

107

of that piece of code. That string of code simply concatenates the contents of a set of source
code files. The SourceCode class then provides methods that prepare this code for parsing,
parse it, merge partial types, merge methods, bracket methods and finally provide output
code. These methods are invoked, in order, by the Run method in the MainClass. Each of
these methods belongs to a different concern.

Two other classes provide limited testing functionality. This was used and implemented as
required during initial development. The MainClass fields are only used for these tests.

Features - Flow Control

Figure 24. The partial class diagram for the Flow Control concern.
The respective source code can be found in Appendix - I.2.1.

All .NET console applications have as an entry point a Main method. In Hyper/Net, this
method first checks if the command line arguments are valid. If so, the arguments will
identify a project file to be used as input and a target file to write the composed output to. The
project file lists the source code files that will be loaded and concatenated into a source code
string. To achieve this, the LoadMergedSourceCode method, implemented in the Input
concern, is invoked. The invocation itself should also be made from inside the Input concern.
To achieve this it would be necessary to compose methods, allowing the Main method to be
decomposed along the different concerns. Unfortunately that falls outside of the partial types
MDSoC approach possibilities. In future versions of Hyper/Net, a prior Hyper/Net version
could be used for composing the Hyper/Net project, allowing method decomposition to be
done.

The string that concatenates the source code is then passed into another Flow Control method
– Run – also in the MainClass. Using a string to contain the concatenated input source code
may not be the most adequate approach. As a justification, please recall the prototype nature
of Hyper/Net.

The Run method invokes the different processing steps in order. The processing steps
themselves are factored into other concerns in this (features) and the Language Features
dimension. The same decomposition considerations presented for the invocation of the
LoadMergedSourceCode method also apply here.

The Run method receives as arguments the source code to be processed (code), an identifier
of its language (sourceLang), identification of the language in which to write the compose
code (outputLang) and a path for an output file to store it (outputFile). First, the method
initializes a SourceCode object with the source code. During SourceCode initialization, the
source code language is also set. Then, the method prepares the source code for parsing by
factorizing import/using directives, using the SourceCode method FactorizeImports from the
Parse Preparations concern. Then, it tries to parse the source code. If this fails, the parse error

108

obtained from the SourceCode object is displayed and the source code text being parsed is
saved for analysis (using the SaveToFile method from the Output concern). If parsing is
successful, the remaining steps can be started. All of them use the AST instead of the code in
textual form.

In .NET projects, the same namespace is usually scattered throughout different files. This
means that there will be several nodes for the same namespace in the AST. So, first, all of the
code units that belong to a particular namespace are brought together under a single
namespace node in the AST. This is done by the MergeNamespaces method from the
Namespace Composition concern. Then, inside each namespace, the partial classes with the
same name can be composed into a single class. This is done by invoking the
MergePartialTypes method from the Partial Type Composition concern. Finally, Hyper/Net
method composition directives can be processed in the AST. To process merge and override
directives, the MergeMethods method is invoked from the Language Features dimension,
Merge concern. Then, to process bracketing directives, the ApplyBracketing method is
invoked from the Language Features dimension, Bracket concern. Finally, the output
language is used to generate the composed code output in the desired language. This is done
by invoking the GetCode method from the Parsing concern. The SaveToFile method, from the
Output concern, is used to write the generated code to the target file.

Unless stated, unrecoverable errors detected inside the invoked methods are communicated
through exceptions for which the Main method provides a single exception handling point.
This exception handling point simply prints the error and returns from the application with an
error code of -1.

Features - Input

Figure 25. The partial class diagram for the Input concern.
The respective source code can be found in Appendix - I.2.2.

This concern contains a single method of the MainClass: LoadMergedSourceCode. It receives
as input the path to an MSBuild XML project file. It opens that project file using the .NET
System.IO.File class Open method. Then, it initializes a .NET XmlReader object that is used
to search for EmbeddedResource XML elements. These identify the files in the project that
were developed using the MDSoC approach and will require composition. For each
EmbeddedResource element, the include attribute is read to get the relative path for the file.
Each of these files is then opened (also using System.IO.File), read with a StreamReader
object and concatenated to a string variable. At the end of the process, this string variable
holds the concatenation of all code in the project that needs to be composed by Hyper/Net.
Finally, the concatenated code string variable is written to a file that can be used to help
debugging. The SaveToFile helper method, from the Output concern, is used for this purpose.

109

Features - Kernel

Figure 26. The partial class diagram for the Kernel concern.
The respective source code can be found in Appendix - I.2.3.

This concern provides a constructor for the SourceCode object. This constructor takes two
arguments. The first is a string containing the source code. The second a SupportedLanguage
enumeration value which identifies the source code language according to NRefactory
classification. Hyper/Net is limited to processing the languages supported by NRefactory. If
the parser was replaced, this concern would have to be changed. Instead of using the
SupportedLanguage as provided by NRefactory, the Parsing concern should hide this
enumeration behind one of its own. This way, if the parser was changed, other concerns, like
the Kernel concern, would not be affected.

The constructor initializes the respective local variables. One of them, the language of the
source code, is made publicly available for reading. The source code string is available
indirectly through the ToString method, which is also implemented in this concern.

Features – Output

Figure 27. The partial class diagram for the Output concern.
The respective source code can be found in Appendix - I.2.4.

This concern adds an output helper method to the MainClass: SaveToFile. SaveToFile takes
as arguments a filename and a string (eventually containing code in text format). It simply
writes the string to the file using two objects from .NET System.IO: File and StreamWriter.
This method was created to avoid repeating this task in the places where it is used in the rest
of the code.

As for the SourceCode object, this concern provides a read-only Code property. In case the
code has not been parsed yet, this property returns the source code string directly. Otherwise,
it uses the GetCode method, from the Parse concern, to generate a string version of the current

110

parser AST, in the language of the original source code. Functionality from both the Kernel
and Parse concerns is involved in this process, making this concern depend on them.
Nevertheless, these can be replaced with equivalent concerns that offer the same functionality.

Features – Parse Preparations

Figure 28. The partial class diagram for the Parse Preparations concern.
The respective source code can be found in Appendix - I.2.5.

This concern adds a FactorizeImports method to the SourceCode object. This method takes
the objects’ source code in text form and moves all using/import directives to the beginning of
the string. This is necessary to be able to parse the source code.

The implementation is straightforward. The sourceCode string variable, of the SourceCode
object in the Kernel concern, is searched for statements beginning with “using”, or “Imports”,
in case the source code language is VB.NET. Each time such a statement is found, it is added
into a hashtable, unless that statement already exists there. It is also removed from the source
code. Afterwards, the directives in the hashtable are concatenated at the beginning of the
objects’ source code string. By manipulating the sourceCode variable from the Kernel
concern, this concern depends on it.

Features - Parsing

Figure 29. The partial class diagram for the Parsing concern.
The respective source code can be found in Appendix - I.2.6.

Parsing is provided by a Parse method in the SourceCode class. This method obtains an
NRefactory Parser object, for the source code language, using the NRefactory ParserFactory.
The source code string is also passed to the Parser object when it is obtained from

111

ParserFactory. Then, the code is parsed (Parser.Parse method). The AST that results from
parsing can be accessed through the CompilationUnit property of the Parser. In case there are
errors, the method fails by returning false. These errors can be accessed in string format
through the SourceCode ParseErrors property. This property obtains the errors in string
format from the parser’s Errors object.

This concern also implements the GetCode method, which uses the NRefactory parser to
generate a string version of the current parser AST, in the desired language. It does so by
creating a language specific NRefactory visitor object, either CSharpOutputVisitor or
VBNetOutputVisitor. This object is then passed to an AcceptVisitor method of the Parser
CompilationUnit property, which holds the AST. Here we are using a visitor design pattern
implemented by NRefactory. The AcceptVisitor method returns the output code as a string
which is then returned by the GetCode method. This concern depends on the Kernel concern
and on the NRefactory library.

Features – Namespace Composition

Figure 30. The partial class diagram for the Namespace Composition concern.
The respective source code can be found in Appendix - I.2.7.

Namespace composition is done on the AST that results from source code parsing. This
process is implemented in the SourceCode class MergeNamespaces method. The method
iterates through the AST in search of NamespaceDeclaration nodes. These nodes hold
namespace declarations and, under them, part of the set of code units belonging to that
namespace. Each NamespaceDeclaration node that is found is added to a hashtable, but only
if that namespace does not exist there yet. In case it does exist, all of the
NamespaceDeclaration node child nodes are copied to the NamespaceDeclaration node that
was already in the hashtable. The duplicate NamespaceDeclaration node is added to a list for
removal from the AST, which is done at the end of the method. After this process there will
only be a single namespace declaration node for each different namespace and it will contain
all of the units in that namespace, independently of the source code file they originally came
from. By using the AST, this concern depends on the Parse concern.

Features – Partial Type Composition

112

Figure 31. The partial class diagram for the Partial Type Composition concern.
The respective source code can be found in Appendix - I.2.8.

Partial type composition is achieved by the MergePartialTypes public method in the
SourceCode class. It iterates the namespace declaration nodes in the AST. Inside each
namespace declaration node, it searches for type declarations (TypeDeclaration nodes) that
have a partial type modifier (Modifier.Partial). This finds partial types inside the same
namespace. To match partial types of the same type, the method uses a new hashtable for each
namespace that is iterated through. Each partial type found in the namespace is searched for in
this hashtable. If it is not found in the hashtable the node is added to it, but, before, its partial
modifier is removed. If there already is an entry in the hashtable for the partial type name, all
of the found partial type child nodes are added to the matched type in the hashtable.

Different partials classes of the same class type can only extend the same base type, but not
all have to. Partial interfaces of the same interface type can extend any interface types.
Furthermore, partial classes of the same class type can implement different interfaces. The
equivalent whole type has to extend and implement all such types in its partials. To achieve
this, each reference in the matched partial types is searched for in the equivalent type in the
hashtable. If the reference is not already present, it is added.

Non-repeated type attributes must also be copied from the matched partial types to the
equivalent type. Due to its complexity, this is done in a local MergeAttributeSections method.
A third similar requirement exists for type modifiers. Non-repeated type modifiers must be
added from the matched partial types to the equivalent type in the hashtable. This is achieved
in a very simple way. As already stated, the partial modifier is removed from all matched
partial types. NRefactory represents modifiers as an enumeration. This way, the remaining
partial type modifiers are added to the equivalent type in the hashtable using the OR
assignment operator (|=) applied to its modifiers and the partial type ones. This results in any
non existing modifiers being added to the type in the hashtable.

Finally, all matched partial type nodes that are found are added to a list, except for new ones,
which are added to the hasthtable. All members of this list are removed from the AST at the
end of the process.

The MergeAttributeSections method takes two attribute section lists as arguments. The
purpose is to add attributes from the first argument to the second one, without introducing
duplicates. In .NET, each attribute can be defined in its own section. But several different
attributes can also be declared in the same attribute section. Because of this, the first attribute
section list has to be iterated in its sections and in the attributes inside the sections. Each
attribute is then searched for in the other attribute section list. If it does not exist there, then it
is added to a return attribute section list. Finally, all of the attribute sections in the second
argument are also added to the return list.

This concern focuses on additive merging at class level. After merging partial types, there can
be repeated method signatures inside classes. This is an issue for the Merge concern in the
Language Features dimension, which is analysed further on.

113

Language Features – Bracket

Figure 32. The partial class diagram for the Bracket concern.
The respective source code can be found in Appendix - I.2.9.

This concern introduces the ApplyBracketing method which transforms the AST by executing
bracket composition. It iterates the AST hierarchically to find method declarations with the
MethodBracket attribute. Each method is searched for a MethodBracket attribute using the
GetAttribute method. This method currently belongs to the Merge concern. The Language
Features dimension may not provide the best location for such shared helper methods.
Possibly a new dimension should be introduced as these methods do not fit the Features
dimension either. But this is an issue for future refactoring.

When a method that has a MethodBracket attribute is found, the attribute is removed from it.
This is done using another helper method, RemoveAttribute, also contained in the Merge
concern. Then, a statement that places the method meta-information into a variable is injected
at the beginning of the method. This is done by creating a LocalVariableDeclaration
statement, using AST classes that represent fields and method invocations. This statement
populates a MethodBase object from the .NET System.Reflection namespace using the static
GetCurrentMethod method, found in the MethodBase class. A local method
(InsertInMethodBody) was created to help introduce these statements at specific points of the
method body. In this case, the statement must be inserted before the remaining method body
(position zero). The meta-information about the method will be passed to before and after
methods, when they are invoked.

At this point, if the MethodBracket attribute defines a non null beforeMethodByName
variable, a method invocation statement is created and introduced before the method body
original code. Again, the invocation statement is constructed using AST classes. The
beforeMethodByName variable is used to identify the method that is invoked. This method
receives two arguments: the base method meta-information variable and a parameter array
containing the parameters received by the base method. Also using the InsertInMethodBody
method, this invocation statement is introduced in the second position of the method body,
after the method’s meta-information variable is populated.

Finally, if the MethodBracket attribute defines a non null afterMethodByName variable, a
method invocation statement is created. Then, the base method body is searched for return
statements. Each return statement is replaced by an invocation of the after method. This
invocation receives the same arguments as the before method and, additionally, the original
return statement expression. In case no return statements are found during this process, then,
an invocation of the after method is created with the same arguments as the before call and a
null return value argument. It is added at the end of the base method body.

Adding a statement to the end of a method body using NRefactory is trivial. The statement is
simply added as a child node of the method.Body BlockStatement object. Replacing a

114

statement node (like return statement nodes) is also trivial: the Expression field of the
statement is simply replaced. Still, the method body is represented as a BlockStatement object.
This object does not allow adding statements except at the end of the block (method body).
To add statements to a specific position (like the beginning of the method body), the
InsertInMethodBody method had to be introduced. This method iterates through the
statements in the method body, from the end to the position where the new statement is to be
added. Each statement iterated through is removed into a .NET List. The new statement is
added to the method body when the adequate position is reached by this iteration. At this
point, all subsequent method body statements have been removed. The new statement can
simply be added like a last statement of the method body. Afterwards, the statements kept in
the list are added back at the end of the method body. This is done in the reverse order of
which the statements were introduced into the list.

It is easier to cope with necessary changes to attribute definitions by having this concern exist,
in a decomposed form, in the console application project. If bracket attributes have to be
extended for further expressivity, the only code in the console application project that is
affected will be located in the Bracket concern. Furthermore, a version of Hyper/Net without
bracketing features could be built by removing the directory for this concern from the project.
The invocation of the ApplyBracketing method from the Run method in the Flow Control
concern also has to be removed. If the current Hyper/Net version was used to decompose
Hyper/Net source code methods, namely the Run method in the Flow Control concern, the
invocation of the ApplyBracketing method could also be decomposed into this Bracket
concern.

Language Features – Merge

Figure 33. The partial class diagram for the Merge concern.
The respective source code can be found in Appendix - I.2.10.

This concerns offers merge and override method composition through the MergeMethod
public method. It also contains a set of necessary support methods which are private. Unlike
the bracket implementation, MergeMethod does not directly search for particular attributes.
Yet, it uses a similar hierarchical iteration in namespaces, their types and, then, each type’s
methods. For each method found, the containing class is searched for all methods that have
the same signature. The comparison between each pair of methods is done using the
EqualMethodSignatures method. If another method with the signature of the current method
is found, any MethodMerge attribute applied to it is obtained (using the local GetAttribute
method) and its MethodMergeAction is checked. This allows determining the type of
composition defined: override or merge. When an override MethodMergeAction is found, if

115

another such attribute had already been found for the method signature being searched for, the
MergeMethod method throws an exception, stating that only one override composition
attribute is allowed. Similarly, if override attributes coexist with merge attributes, for the
same set of matching methods, an exception is thrown, because override composition is
incompatible with merge composition.

When all the methods inside the class have been compared with the current method, it is
known how many matching methods exist and how these should be composed. The simplest
case is when there is a single method and it has a merge attribute applied to it. This case is
dealt with by removing the attribute from the current method and continuing the search with
the following methods in the class. Attributes are removed using the local helper method:
RemoveAttribute.

If more than one method was found with the same signature and none had composition
attributes, then an exception is thrown, stating there must be at least one MergeMethod
definition for repeated methods.

If an override attribute was found, the matching method declarations in the same class are
iterated again and all, except the one with the override attribute, are added to a list of methods
to be removed. At the end of the iteration inside the class, this list will be iterated through and
all methods in it are removed from the class.

Otherwise, if the attributes define a merge composition with more than one method involved,
a new method declaration is constructed. This declaration has the signature of the matching
methods, including the name. Its body, a BlockStatement object, will then be populated. To
help in this process, two lists are kept, while the current class is iterated through once again.
One of these lists will hold the method invocations for the methods that are being merged, in
the order defined by their priorities. The other, will hold the return variables where the results
of each of these method invocations will be kept. First, the current class is iterated through
once again, to locate the methods being merged. Each method is renamed, by concatenating
an increasing integer variable to the method name. It is also made private. A method call
statement for this renamed method is created using the local method CreateMethodCall. Next,
the priority of the method and a merge results method are obtained, if present in the methods’
MethodMerge attribute. In case the method invocation returns a value, a variable to contain
the result is also declared and initialized with the invocation of the renamed method. The
uniqueness of its name is guaranteed like with the renamed method name, using the same
integer variable. In this case, the result variable is added to the list of return variables, using
the inverse order of the priority declared in the attribute. It is also added to the invocations
ordered list, also using the inverse of the attribute priority. In case the methods have a void
return, only the renamed method invocation is added to the invocations list. The
MethodMerge attributes of the renamed methods are removed, again using the
RemoveAttribute method. Finally, the attributes of the renamed method are moved (copied
and removed) to the new merged method declaration.

When all the matching methods in the class have been iterated through, the renamed method
calls are introduced into the merged method body, according to their order of priority. If there
is a result merging method, a new variable is declared and initialized with a call to the result
merging method. This call is done with a list of arguments obtained from the list of return
variables. This variable declaration is added at the end of the merged method body, along with
a return statement, returning this variable.

116

Finally, the merged method is added to a list of methods that are to be added to the class. At
the end of class iteration, this list is iterated through and any contained methods are added to
the class.

The GetAttribute method abstracts the complex process of getting the first attribute, in a
particular method, which has a specific attribute type. Different attribute sections can exist;
these have to be iterated through, as well as the contained attributes themselves. When an
attribute with the desired type is found, it has to be processed for arguments. Each argument
has to be converted from an AST expression form into the adequate .NET type and have its
value extracted. This is done by analysing the different possible kinds of attribute argument
expressions, adequately extracting their type and value, processing the value (for instance,
parsing an integer representation) and adding it to a list. Finally, this list is used to initialize
an object of the attribute type.

Fortunately, removing an attribute is simpler. Still this task was abstracted into the
RemoveAttribute method. Like GetAttribute, it also iterates attribute sections and their
attributes. Any attributes that match the desired type are added to a list for removal. This is
done after the each attribute section is iterated through. If the attribute section itself is empty
after the attribute type is removed, it is also added to a list for removal at the end of the
process.

The EqualMethodSignatures method first checks if the two method declaration objects
(MethodDeclaration) that are passed as arguments return the same type. If not, their
signatures are not equal. Then, it compares the number of arguments of each method. If they
are equal, it compares the argument types one by one. If everything matches, the methods
have the same signature. The method names should also match, but this check is done outside
this method. This allows using it for a more generic comparison of method signatures, without
comparing method names.

The AST structure for calling a method can be obtained using the method declaration itself.
Still, this structure is not straightforward. The CreateMethodCall method was introduced to
abstract this process. First, a FieldReferenceExpression object is created from the method
name. It is used to create an InvocationExpression object to which the method parameters are
added, one by one. This assumes that the method parameter names are available at the calling
scope. The InvocationExpression object is then returned.

8.2.3 Testing Hyper/Net

117

Figure 34. The partial class diagram for the Tests concern.
The respective source code is not available because this is a minimal test implementation. There is a lot of

sample code involved in the tests so it would take up much space without providing enough benefits.

The code that provides testing functionality for Hyper/Net could be seen as defining its own
dimension. Due to its size, it is only made up of a single concern. There has not been much
emphasis on testing Hyper/Net functionality thoroughly yet. There are only a few detailed
tests, like the TestMethodMergeAttribute, that validates basic features of the MethodMerge
attribute with an override MethodMergeAction. The MainClass also contains several blocks of
code focusing different situations with bracket, merge and override composition. It also
contains a VB.NET code example and an example that is invalid C# code. All of these can be
processed using the two Tests class methods.

This concern is a good example of a concern where the object dimension is locally
representative. As for the rest, only another concern, the Output concern, contains more than
one class. The other concerns are not so balanced because Hyper/Net is mostly broken down
into the MainClass and the SourceCode classes. MainClass captures elements from the Flow
Control and I/O concerns. SourceCode captures elements from the Language Features
concerns and Features concerns that used to prepare the code to be processed by the language
features. Some code refactoring, that should be done to enhance comprehensibility and
Hyper/Net evolution, is expected to develop the object dimension further and, possibly, end-
up with a more dispersed object dimension, in relation to the other dimensions of concern.

8.3 Conclusions

One of the most adequate ways of looking at Hyper/Net is from the perspective of the Time
dimension. As with normal command line applications, Hyper/Net processing starts and ends
with I/O oriented tasks. It processes entire .NET projects, but only a single source code file is
generated. The reason for this is that the parser used by Hyper/Net can only process a single
block of source code. This requires that the source code from the files in the project is
concatenated into a single string. Preparing this string for parsing and parsing it are the two
processing steps that follow the initial input steps. Before the actual Hyper/Net attribute
composition takes place, two other native .NET composition steps are taken, composing
namespaces and partial types. Merge and override composition is processed first, in a single
step. It is followed by bracket composition which leaves the code ready for output. All of the
composition steps work with the AST version of the source code.

While the Time dimension is a virtual one, there are four other dimensions in Hyper/Net that
are physical. A project dimension divides Hyper/Net into a public class library, which should
be referenced from projects that use Hypert/Net, and the actual source code processor, which
is a console application. There is also a Features dimension where a Flow Control concern
operates the different processing stages. It does this by invoking other features, which are also
concerns in the Features dimension, and Hyper/Net specific language features. These specific
language features implement and provide declarations for Hyper/Net attribute composition
and belong to their own dimension, the Language Features dimension. Finally, there is a Test
dimension with simple ad-hoc tests. Curiously, the Features and Language Features
dimensions, together, almost implement the (virtual) Time dimension.

By adopting the MDSoC organization of Hyper/Net for this chapter, it was fairly simple to
address each requirement implemented by Hyper/Net down to the full detail of the

118

implementation (code artefact). Each concern is focused at a time, providing a simple yet
complete and detailed description.

119

Chapter 9

Comparing MDSoC implementations

The topics addressed in the previous chapters are inter-related, in particular the MDSoC
implementations presented in Chapter 5 and Chapter 6. But these were not compared, except
for some particularities. This chapter provides such a comparison between MDSoC
implementations. This comparison is done according to groups of criteria, similar to those
used to analyse each implementation. The evaluation according to these criteria is
summarized in a table. Then, each group of related comparison criteria is analysed in more
detail in its own section.

9.1 Comparison criteria

The criteria for this comparison were chosen according to the criteria by which each MDSoC
implementation was analysed in Chapter 5 and Chapter 6 and can be grouped as follows:

� Context – The first set of comparison criteria addresses the context in which the
implementations can be used. These range from the artefacts and formalisms
(programming languages) that can be used, to the context of these solutions in terms of the
standard compilation process and whether they require using any additional software.

� Hyperslices – Compares the hyperslice implementations that can be used, the smallest
composable units and whether declarative completeness can be achieved.

� Hypermodules – Focuses on the implementation of composition provided by each
solution. The individual criteria are: the number of coexisting hypermodules that are
possible, whether the composition definition is mixed with the code, which composition
strategies and exception relationships are usable and, finally, which composition functions
are supported.

� Reuse – Addresses hyperslice and hypermodule reuse limitations.

� Usage – Compares how the implementations can be used for different tasks and scenarios.
The usage scenarios that are addressed are: usage from scratch, to introduce new features
to existing code, to decompose existing code, to mix-and-match concerns and usage
without source code.

120

� Other limitations – Address additional limitations that could not be captured with the
other criteria.

9.2 Comparison summary

Table 1 summarizes the comparison of MDSoC implementations in terms of the most relevant
points. Each is addressed in more detail afterwards. In this table, the most interesting results
for each point of comparison are highlighted in bold.

121

 Hyper/J HyperC# Partial Types Hyper/Net
Artefacts Code Code Code Code

Formalisms Java C# Any .NET 2.0 (or

above) language
C# and VB.NET

Compilation

context

Intermediate language
weaver

Source code
transformation

Source code
transformation

Source code
transformation

C
o
n

te
x

t

Introduces

additional

software

Yes Yes No Yes

Hyperslice

implementation

model

Physical + Virtual

Physical + Limited
virtual

decomposition
Physical Physical

Composable

primitive units

Type members

(methods, variables,

etc.)

Methods Partial types Methods

H
y
p

er
sl

ic
es

Declarative

completeness
Possible

Not supported for
methods

Possible for types
(classes, interfaces)

Possible for types
and methods

Supported

hypermodules
∞∞∞∞

∞, each limited to a
single class output

1 per .NET project 1 per .NET project

Composition

definition separate

from code
� � � �

Composition

strategies
1 per hypermodule 1 per hypermodule27

Static: composition
defined by partials

Static: composition
defined by partials

Composition

relationships

Scope: all units but

packages

Limited to 1 bracket
and 1 equate

28
 (for

methods)
None

Scope: only for
methods H

y
p

er
m

o
d

u
le

s

Supported

composition

functions

Merge, Override,
Bracket

Merge, Override,
Bracket

-
Merge, Override,

Bracket

Hyperslice reuse � �
Need to anticipate

composition in
reuse scenario

Need to anticipate
composition in
reuse scenario

R
eu

se

Hypermodule

reuse
�

Limited by the
single class output � �

Used to decompose

existing code
� �29 � �

Used from scratch � � � �
Used to introduce

new features � �29 � �

Used without

source code � � � �

U
sa

g
e

Mix-and-match � � � �

Other limitations

Significant
implementation
limitations that

invalidate certain
features (see Subsection

5.1.4)

Developers need to
program in an

extremely limited
GUI

- -

Table 1. Comparison chart of MDSoC implementations.

27 But only generates a single output class.
28 Equate applies the composition strategy composition function to any pair of non matching methods.
29 But the code needs to be input manually in the HyperC# GUI.

122

9.3 Context

All of the four MDSoC implementations presented herein are limited to the code artefact.
Two of them (Hyper/J and HyperC#) are limited to a single language while the remaining two
(.NET partial types and Hyper/Net) support more than one language, but not simultaneously.

Only the first of these MDSoC implementations, Hyper/J, operates after source code is
compiled (into Java bytecode). The remaining implementations work previously in the
compilation process, as source code pre-processors. These implementations output composed
code that afterwards is compiled using standard compilers.

All MDSoC implementations analysed but one need to introduce additional software that is
specifically targeted for MDSoC composition. .NET partial types are a native feature of .NET
2.0 languages and support a basic MDSoC model that requires no specific software, other
than a standard .NET compiler. This fact has the advantage that there is already a large user
base that can benefit from this approach in their existing development environments. The
other implementations require installing software and, usually, setting up the development
environment for MDSoC.

9.4 Hyperslices

Another comparison element is the way MDSoC hyperslices can be implemented in each
approach. Hyper/J is the only approach that supports near limitless virtual decompositions.
HyperC#’s support for virtual decomposition is limited to decomposing methods virtually.
This is further limited by a physical implementation for the virtual method decompositions.
Hyper/Net does not support virtual decomposition at all.

In MDSoC, virtual decomposition is important when units are indecomposable. But, when
units are actually decomposable, the physical decomposition model should be used instead.
Fortunately, the physical decomposition model is supported by all of the analysed approaches.
Each approach supports the physical hyperslice model using different structural elements.
Hyper/J proposes “Hyperslice Packages”, where each hyperslice is implemented by a
particular package (see Subsection 5.1.1). Hyper/Net and the partial types approach use
directories in a similar fashion (see Section 6.1). Finally, HyperC# uses a GUI to represent
hyperslices and their contents, but behind the scenes implements hyperslices physically in
different classes that are prefixed with the hyperslice name (see Subsection 5.2.1).

The physical hyperslice implementation model allows developers to manipulate the MDSoC
hyperspace structure and contents directly. It provides something tangible that developers can
see and work with. Also, by structuring hyperspaces using physical entities that most
developers are already acquainted with, namely packages and directories, hyperspaces
become more familiar. These advantages of the physical hyperslice model make it the model
of choice whenever it is possible to physically decompose units. Units should only be
matched to more than one hyperslice, using virtual decomposition, when they cannot be
physically decomposed. Virtual dimensions will provide alternative views of a hyperspace.
For the benefit of developers, virtual dimensions can become almost as usable as physical
dimensions by allowing their direct manipulation, for instance, using IDE visualization and
editing plug-ins. Yet, neither of the implementations that somehow support virtual
decomposition (Hyper/J and HyperC#) offers such a feature.

123

Another defining aspect of MDSoC implementations is the granularity down to which it is
possible to decompose units that latter can be composed. As defined in Section 3.2, the
smallest units resulting from decomposition are primitive units. Different MDSoC
implementations support composing primitive units at different levels of granularity.
Supporting lower levels of granularity provides more power in decomposition and
composition. Methods are primitive units in Hyper/J, HyperC# and Hyper/Net. The .NET
partial types approach only supports primitive units at a higher level of granularity: partial
types, which are slightly below the granularity of classes. While the only primitive units
supported by HyperC# and Hyper/Net are methods, Hyper/J supports composing other kinds
of primitive units, like variables and other class members. Simultaneously, Hyper/J supports
composing units at higher levels of granularity. This is crucial in terms of the expressive
power of MDSoC implementations. The other approaches also support higher level
compositions, at class level, but only in a static fashion. HyperC# composes all input classes
into a single class, while .NET partial types and Hyper/Net compose matching partial types
into a single type.

As MDSoC hyperslices can reference units that are outside them, some consider that these
hyperslices should be declaratively complete. Declarative completeness is fully possible with
Hyper/J. As for the remaining implementations, it is only possible for particular unit types,
like types and, in the case of Hyper/Net, also for methods. We consider these limitations to be
unimportant. Our view on the need for declarative completeness has already been presented at
the end of Subsection 6.1.1. Declarative complete hyperslices that are not composed with
other hyperslices, offering the required units, will only yield errors during runtime, when
these units are used. Without declarative completeness these errors will be detected earlier on,
during compilation, which is always better for the developer.

9.5 Hypermodules

As for composition, all the implementations allow the creation of as many hypermodules as
required for a given hyperspace. But only Hyper/J has no particular restrictions on these
hypermodules. HyperC# only outputs one class for each hypermodule. This does not allow
using hypermodules to directly create most of the outputs desired (for instance, a class
library), which usually need to include more than one class. There are workarounds for this
issue. Namely, to bring each class that is output by a different hypermodule under a single
project that is then compiled. Yet, this is not a natural way to program with MDSoC because
it forces developers to think in terms of the classes that are output, one by one. It is clearly
forcing developers to think in terms of the object dimension. As for the remaining
implementations, both Hyper/Net and the partial types approach need to use one project to
implement one hypermodule. Apparently, this could be almost as limited as having
hyperspaces made up of a single project and having only one hypermodule defined for it. In
particular, a hypermodule that always includes the entire hyperspace. But, in fact, with both
approaches, it is possible to have hyperspaces that span several different projects. In these
hyperspaces, hypermodules can compose units from different projects by being defined
through a new project which includes the desired units using one of the linking approaches
discussed in Subsection 6.1.3. This solution is almost transparent for the programmer and
provides as much versatility as Hyper/J’s multiple hypermodules.

Hyper/J and HyperC# allow defining a composition strategy that is applied to each
hypermodule. In Hyper/Net and the .NET partial types approach, the composition strategy is
statically defined by partial type composition. With their static composition strategy, these

124

approaches have a more limited composition expressiveness that cannot be overcome with
composition relationships.

When it comes to composition function support, all implementations, except for .NET partial
types, offer the same composition functions: merge, override and bracket. .NET partial types
implement a single, merge-like, composition function for partial types. It is applied as part of
the .NET partial types composition strategy and cannot be applied in an ad-hoc fashion (as
composition relationships). In Hyper/J, all composition functions can be used in an ad-hoc
fashion in composition relationships, involving all units but packages. As for Hyper/Net, it
only supports composition relationships involving methods. HyperC# is also limited to the ad-
hoc composition of methods. It further limits this composition by allowing only the usage of
one bracket composition function and one equate composition relationship per hypermodule.
Recall, from Subsection 5.2.2, that the equate composition relationship will apply the
composition function defined by the composition strategy to a given pair of non-matching
methods.

The composition information in a hypermodule can be seen as metadata. It can coexist with
the code, sometimes being part of it, or, it can exist separately, referencing the code as
required. The first option was taken with the partial types approach and Hyper/Net, where
composition information coexists with and is part of the code. On the contrary, in Hyper/J and
HyperC#, it exists separately from the code, in specific files. The main advantage of having
composition information separate from code is the ability to reuse either (code or
composition) whenever it is appropriate.

9.6 Reuse

Hyper/Net and the partial types approach allow very limited reuse because they mix
composition information with the code itself. When composition information coexists with
code, it might be easier to understand the units that are involved in compositions, by having
that information next to the code it affects. This is the only advantage of this coexistence.
When composition information is separate from code, the same advantage can be provided by
specific tools that read composition information and represent it next to the code it affects.
Still, none of the analysed implementations offers such tools at this point.

In terms of hyperslice and hypermodule reuse, Hyper/J provides the best support, allowing
hyperslice and hypermodule reuse without particular limitations. HyperC# follows, with the
only limitations imposed on hypermodule reuse by its single class output. Hyper/Net and
.NET partial types provide very limited reuse features. They do not allow hypermodule reuse
due to relying on partial type composition, which can only take place inside the same project
and cannot involve types that are not partial. This excludes the types that are output by
hypermodules. As for hyperslice reuse, both implementations are limited by the need to
anticipate the reuse scenarios by introducing partial types that match for all expected reuse
scenarios. This is a consequence of mixing composition information with code in both
implementations.

125

9.7 Usage

In terms of usage scenarios, all implementations provide similar support. All can be used from
scratch, to decompose existing code, to introduce new features into existing indecomposed
code and to mix-and-match concerns. Due to its context in the compilation process, the only
implementation that supports composing software without source code is Hyper/J. It can be
used to decompose, mix and extend existing applications for which there is no source code.
The other implementations lack these features.

9.8 Other Limitations

Hyper/J is implemented with several technical limitations. These disallow some of the
features discussed. Still, Hyper/J should support the full announced feature set if these
technical issues are overcome. As is, the most relevant effects of these technical limitations
are disallowing composition relationships using merge and override composition functions
and outputting all composed units as public. As for HyperC#, it is possibly the least
programmer friendly approach, due to its need to use a specific GUI to define classes. This
GUI is extremely limited and unnatural. If HyperC# used a parser to gather metadata about
the code, it would not need the GUI and would provide a much more interesting
implementation. As for .NET partial types and Hyper/Net, no limitations other than the ones
already mentioned have been identified.

An unfocused element of comparison is support for traceability of compilation errors and
debugging. Implementations working with source code are usually more limited in this field
as they rely on specific compiler and debugger support for mapping the composed code to the
original code. Solutions that work after the decomposed code is compiled can rely on standard
compiler and debugger support for the decomposed code, providing a more adequate
developer experience. This way, Hyper/J is expected to provide the best support in this regard.
As for the other implementations, by being a native approach, using standard .NET compilers,
the partial types approach also provides error reporting and supports debugging relative to the
decomposed code. Hyper/Net also provides some level of error reporting relative to the
decomposed code, in particular, parsing and composition errors.

9.9 Conclusions

Hyper/J has been available for download from IBM since 2000 and the latest version
available is from 2003 [HyperJ03]. It can be considered the less limited MDSoC
implementation, with rich composition expressiveness (which can be used at diverse
granularities), excellent reuse capabilities and being the only one that is able to decompose
compiled code. HyperC# is not publicly available and is mostly limited by its particular GUI
approach that forces developers out of their IDEs. The biggest limitations in .NET partial
types and Hyper/Net are dictated by mixing composition information with code, which is
imposed by the usage of partial types as a native composition mechanism. Enhancing
Hyper/Net reuse is one of the major issues presented for future work in Section 10.3.

We wrap-up our analysis by highlighting the points where each implementation surpasses the
others:

126

� Hyper/J: composition expressiveness (at diverse granularities); excellent reuse.

� .NET partial types: being native.

� .NET partial types and Hyper/Net: supporting more than one language.

It would be desirable to agglomerate these features in a single MDSoC implementation.

127

Chapter 10

Conclusions and Future Work

This chapter is organized in four sections. Section 10.1 provides an evaluation of the results
achieved as part of our thesis. It also tells of additional knowledge transfer experiences related
with Hyper/Net. Section 10.2 presents the history of the development of Hyper/Net and
summarizes parallel developments and investigations, not presented in this document.

Section 10.3 presents several topics that should be addressed by future work. Most future
work is directed towards Hyper/Net, which at least requires to be leveraged with the features
of other implementations, in particular, Hyper/J. A more ambitious perspective sees
Hyper/Net as a prototype with which it is possible to gather and evaluate more elements
regarding different aspects of MDSoC composition. This allows addressing other issues for
future work that fall outside the strict boundaries of the code artefact, under a unified MDSoC
perspective.

To end this chapter, Section 10.4 provides a few final remarks.

10.1 Results

Recall, from Section 1.1, that this thesis had three chained goals. The first was to discover or
develop a method to use MDSoC while programming with .NET. The next was to implement
the classic Expression SEE example using this method. Finally, the last was to validate the
results of the Expression SEE example with adequate tests, in particular, ones that could test
different flavors of the example obtained by mix-and-match.

With the .NET partial types approach and Hyper/Net, the first goal was achieved. These
approaches have reuse limitations, but reuse was not the focus of our goal. There are also
some other limitations, focused in Subsection 6.2.3 and in Chapter 9, but these may be
overcome in future versions of Hyper/Net as will be proposed for future work. Both
approaches allow programming in the existing development platforms and have little impact
on existing development processes, apart from allowing the adoption of MDSoC.

As part of our goals, our MDSoC implementation for .NET had to be validated. We followed
two different paths to do this. The first was to implement and thoroughly test a classic

128

MDSoC example. The second was to validate our work with peers from different
communities by means of public presentations.

10.1.1 The Expression SEE case study

With Hyper/Net, it was possible to implement the Expression SEE example from MDSoC
literature, as documented in Section 7.5. Only the logging feature could not be implemented
as easily as documented in MDSoC literature due to the limited Hyper/Net matching
mechanism. Caching was another feature proposed in MDSoC literature [Ossher99] but could
not be easily implemented in either Hyper/Net or Hyper/J due to the lack of support for
around functionality in bracket composition.

Finally, the expression SEE example was tested using unit tests. Composed behavior was
adequately tested using the override and merge composition of unit test methods. Our testing
approach showed it could cope with the removal and introduction of the concerns in this
example, thus, being compatible with mix-and-match.

10.1.2 Public presentations

Apart from this document we were also able to validate the results by both publishing a paper
with some results and then performing public presentations to communities from the fields of
Aspect-Oriented Software Development (AOSD), Intelligent Transport Systems and
Microsoft .NET software development.

The first public presentation of our work was done at an AOSD workshop in Spain [Dias06].
There, we presented an overview of Hyper/Net and demonstrated its usage to extend a basic
version of the Toll example presented in Section 7.4. We also did a presentation on the usage
of design-patterns and MDSoC for Intelligent Transport Systems software, as part of a
workshop promoted by a Portuguese motorway operator [Dias07]. This presentation
referenced the advantages of MDSoC in comparison to design-patterns, when used for ITS
software, also using the Toll example.

Finally, in March 2007, we were invited to present this work in an hour and a half session at
Microsoft’s TechDays event in Portugal. This event is directed towards developers and IT
professionals working with Microsoft technologies, which are the focus of most sessions. Our
session was titled “Aspect-Oriented Programming in .NET” and was included in the
development track of the event. It introduced Aspect-Oriented Programming, presented and
compared AOP solutions for Microsoft .NET and showed how MDSoC could be used to
introduce a symmetric approach to address the same issues as AOP. This session also
provided live demonstrations using an AOP tool (AspectDNG) and Hyper/Net. The
attendance figures for this session, provided by Microsoft, were unexpected. The room only
had 20 seats but it was able to accommodate the 58 attendees. Out of these, 40 filled in an
evaluation form, rating the session at 6.36 on a score from 1 to 9.

Papers and presentations for all these sessions are publicly available at the author’s
homepage: http://ptsoft.net/tdd/. Some materials are only available in Portuguese.

129

10.2 The history of Hyper/Net

Hyper/Net started out as an implementation project to support the writing of a paper for a
course on Advanced Topics in Software Engineering, which is part of the MSc curricula. We
started out by using partial types to implement the Expression SEE example in C#. Soon, we
felt the need to compose methods so we could fully implement the Expression SEE example,
but, partial types do not support this. At that time, there were no MDSoC implementations
that supported C#. HyperC# was not publicly available and a paper about it [Hantelmann06]
was still to be published. This was when we decided to implement Hyper/Net and use it to
compose the code for the finished Expression SEE example. The results of this work were
summarized in a paper for that course and presented in class. This paper was selected for
submission to a workshop on AOSD, held as part of the JISBD conference in Spain30. It was
adapted and presented at the workshop on October 2006 [Dias06].

The paper presented in Spain already identified the .NET partial types MDSoC approach and
provided an example on how to use Hyper/Net in complement to this approach. Using
existing development platform features to natively implement MDSoC was an innovation.
This was why we chose to extend these topics for the MSc thesis documented herein. Much of
our initial work was carefully reviewed and the conceptual model of our approaches was
documented according to the MDSoC model presented in literature. Other MDSoC
implementations were also further analysed, namely HyperC#, as [Hantelmann06] was finally
published in the mean time.

During the elaboration of our thesis, we also dedicated efforts to contextualize the MDSoC
approach in terms of human cognition and in regards to other composition solutions, namely
AOSD. These branches of our investigation have already provided interesting results and will
certainly be focused in future publications. Including them in the context of our MSc thesis
might risk dispersing the focus of our work, so we chose not to address these contextual
topics. At this point we have done and have ongoing work on:

� The investigation of the relations between MDSoC and the human cognitive model, as
seen by cognitive sciences.

� Completing the formal MDSoC model started by [Ossher99], according to information
provided in an informal fashion in [Ossher99] and other MDSoC literature.

� Using the MDSoC formal model to evaluate MDSoC implementations, including
Hyper/Net.

� Using the formal model to compare MDSoC and AOSD.

10.3 Future work

Several concerns for future work have already been identified throughout the previous
chapters. We now focus some of these and present the more ambitious areas for future
research.

30 The homepage of the AOSD workshop at JISBD 2006, DSOA’06, can be found at
http://www.dsi.uclm.es/personal/ElenaNavarro/DSOA06/.

130

Hyper/Net still has a long way to go in terms of composition expressibility. Extensions to the
present Hyper/Net composition constructs are required, some more trivial than others. There
is also a clear need to find a composition representation that supports better hypermodule and
hyperslice reuse. To achieve this, Hyper/Net should be reviewed in terms of implementation.
But, above all, there should be a prior analysis and design work around existing and missing
functionalities.

10.3.1 Extensions to Hyper/Net composition

Hyper/Net uses the same attribute for expressing merge and override composition. This is an
unnecessary confusion resulting from a design flaw. These should be expressed separately, by
two different composition attributes. These two attributes could share common features by
extending the same base composition attribute class.

Mix-and-match is not suitably supported by override composition. Removing a concern which
has an override composition attribute applied to a particular method will leave the remaining
set of matching methods un-composed. To avoid this, it should be possible to introduce
multiple override composition attributes and decide on which to enforce, based on the priority
of each attribute. This would also benefit the composition of interfaces. Still, Hyper/Net could
compose partial interfaces without requiring any composition attributes. Interfaces only
provide member declarations and these must be equal in partial interfaces, so they can be
matched. Hyper/Net could simply remove repeated declarations while composing partial
interfaces. Composition attributes applied to interface elements would simply be ignored.
However, this is only a hypothesis. An adequate design decision for interface composition
requires further research, for example, in terms of what to do with member declaration
metadata, like attributes and XML documentation comments.

Hyper/Net only supports method composition. The composition of constructors, properties,
and, eventually, variables should also be considered.

10.3.2 Extending Hyper/Net support for reuse

According to the MDSoC model, hypermodules should be reusable in new compositions (see
Section 3.1). By allowing the definition of different hypermodules for the same hyperspace,
the MDSoC model also supports hyperslice reuse. Subsection 6.2.3 identifies severe
limitations in hyperslice and hypermodule reuse with Hyper/Net. That subsection traces the
origins of these limitations to two facts:

� Hyper/Net uses units from the code artefact – partial types and attributes – to express
composition.

� The units involved in Hyper/Net composition are fixed. For classes and interfaces, they
must all be partials of the same unit type. For methods, they must have the same signature
and belong to matching partial types.

Subsection 6.2.3 also points out solutions to achieve adequate hyperslice and hypermodule
reuse with Hyper/Net. Solving the first limitative fact requires separating the composition
definitions from the code. This can be achieved by implementing composition constructs in an
artefact of their own or, at least, in a separate concern of the code artefact. The second
limitative fact requires extending Hyper/Net’s matching model with more powerful matching

131

constructs. Here, most MDSoC solutions use regular expressions to identify matching units.
These could be adopted for Hyper/Net, but with the adequate care, as Hyper/Net is currently
based on type and signature matching. Some of the properties of the current stricter matching
model might also be desirable. Recall that Hyper/J lacks the possibility of matching
signatures, which can be considered a limitation.

10.3.3 Holistic MDSoC and Hyper/Net

The previous sections focused future work dealing with necessary changes and extensions to
Hyper/Net composition support in the code artefact. This section uses a holistic perspective of
MDSoC to look at a broader scope of future work.

Still inside the code artefact, each dimension introduces its own perspective of the code body.
Hyper/Net does not support virtual decomposition. This way, each dimension will only
contain the units that were physically decomposed into it. Virtual decomposition could be
interesting in Hyper/Net to provide other useful dimensional perspectives31. These
perspectives could then be used by developers to work with the units in their physical form,
wherever they might exist. Providing such interaction would be an interesting IDE
enhancement.

As mentioned in Subsection 4.2.4, the IDE is becoming a central tool in the entire software
development process. Thus, adequate support for MDSoC in the IDE is crucial. This
motivated the efforts to integrate Hyper/Net with two .NET IDEs (these integrations are
presented in Subsections 7.2.1 and 7.2.2). There were two main requirements guiding these
integrations:

� Retain the IDE support for one click builds.

� Allow using auto complete and other IDE programming support features with MDSoC
decomposed code.

Even though both requirements were supported separately, none of the Hyper/Net IDE
integrations supported them simultaneously. The build process implemented by each IDE
should be investigated in more detail to search for alternatives that simultaneously realize
both requirements of the integration.

Another limitation of the Hyper/Net integration with IDEs is the inexistent error traceability.
In the future, these integrations and Hyper/Net itself should be enhanced in order to allow
tracing syntax, composition and other errors to the decomposed source code and show them
like errors are normally presented in the IDEs. A similar approach is also necessary for
debugging.

Typically, MDSoC hyperspaces are defined prior to program compilation. To change the
hyperspace of a running program, for instance to add or remove hyperslices, the program
must be separately recompiled, stopped and replaced. Adding and removing MDSoC
hyperslices from a running program is a valid requirement. Hyper/Net does not support such
dynamism, as most other MDSoC implementations do not either. This kind of support would
require a different integration approach. Hyper/Net currently works with source code. To be
able to change runtime behaviour it would have to work with intermediate code, integrated

31 With the current Hyper/Net version and the Visual Studio IDE it is possible to navigate the Object dimension
in this fashion by using the Visual Studio Class Designer, but no other dimension can be navigated this way.

132

with the .NET Just-in-time (JIT) compiler. An interesting framework to support this approach
is Microsoft Phoenix. It is being developed by Microsoft and consists of a unified framework,
offering extension and customization features for the .NET compilers and runtime. A solution
with related, yet, less ambitious requirements, that uses Microsoft Phoenix, is discussed for
the SetPoint Aspect Oriented Programming implementation [Altman06].

The test artefact is also embraced by the holistic MDSoC perspective. Multi-dimensional unit
testing has already been identified, in Section 7.3, as a valuable field and poses interesting
challenges for future research. As presented in Section 7.3, testing merged methods provides
one such challenge. Further research into the composition of test concerns is required to
address this challenge. Eventually, new composition features may be necessary for providing
test concerns with the required mechanisms to test standard concern composition, such as
merge. More insight into test-driven development and other testing approaches would also be
valuable to strengthen the proposed MDSoC testing approach.

Previous sections (7.2, 7.4 and 8.2) already focused situations when a concern needs to use
functionality from a different concern. In these cases, it is desirable to avoid introducing a
direct dependency between concerns. Future research could explore solutions like defining
inter-concern interfaces or using adapters for each different concern that provides the same
functionality.

Another interesting field for future research deals with the crossing of boundaries between
different hyperspaces. For instance, take one hyperspace defined inside a .NET project, or a
set of projects, with its own dimensions and respective concerns. If it is used as a library from
a second hyperspace, should it not offer its functionality according to the implemented
dimensions and concerns? Eventually, the class library of the first hyperspace should
automatically have a set of interfaces generated, one for each concern of its hyperspace. The
second hyperspace could then use these interfaces to view the library functionality from the
different concern perspectives. The same approach can be thought of in terms of automatic
documentation organization.

Partial types are a native language feature of .NET languages that we successfully explored in
terms of MDSoC support. It would also be interesting to explore other existing features of
software development environments and platforms that can be used for MDSoC. For instance,
source control and change management mechanisms could be used together to support a
features dimension.

If an MDSoC hyperspace is defined in higher level artefacts, like analysis or design, then, its
structure can be automatically generated for the code artefact. This kind of hyperspace
traceability between definitions in the different artefacts is essential and should be
straightforward to automate given that appropriate analysis and design tools exist.

As IDEs tend to become the tool of choice for all stages in software development, enhancing
Hyper/Net IDE integration is an important task for adequate MDSoC support across different
artefacts. In fact, as the hyperspace structure is shared between the different artefacts, it
should be implemented only once and be shared by the different artefacts of the same
hyperspace. This can also be an interesting issue for IDE integration when using design and
analysis tools integrated in the IDE.

133

10.4 Concluding remarks

Software composition addresses relevant problems in Software Engineering. With the advent
of subjects, SOP provided a generic modularization mechanism that could be used to
overcome limitations with Object Oriented modularization. MDSoC introduced this
modularization mechanism into a multi-dimensional structure and extended its context from
programming to the entire software development lifecycle. This allowed direct traceability
between the different artefacts in software development.

Moreover, both SOP and MDSoC allow the introduction and removal of features without
affecting the others. This promotes reuse and also provides support for combining different
sets of features through mix-and-match. Mix-and-match can be used to support software
product lines.

We developed our own MDSoC implementations so we could use MDSoC in Microsoft
.NET. Our .NET partial types approach can be used to implement MDSoC without any
supporting software other than a .NET compiler. This comes at the cost of only being able to
create very simple MDSoC hyperspaces, but, still, it offers an interesting MDSoC
implementation that even supports mix-and-match. To also support the composition of
methods, we extended this approach by implementing Hyper/Net. It uses .NET attributes to
hold composition information. These attributes are applied directly to the methods, so,
Hyper/Net does not separate composition information from the code itself.

Hyper/Net was used to develop some case studies that simultaneously showed the benefits of
MDSoC and served to validate our implementations. This validation was consolidated
through tests on the functionality of the case studies, using a unit testing approach that we
adapted for MDSoC. This validation was not only achieved through case studies but also by
analyzing our implementations in the light of the MDSoC model and by comparing them with
other MDSoC implementations.

When compared with existing MDSoC implementations, Hyper/Net showed relevant
limitations, but these can be addressed and overcome as part of future work. We were able to
innovate, introducing the first native MDSoC implementation and by offering support for
more than one programming language. Being able to use our MDSoC approaches inside IDEs
also simplifies their adoption and leads way for the future support, in the same hyperspace, of
the different artefacts that can be manipulated in the IDE.

134

135

References

[Altman06] R. Altman, A. Cyment, “Exploring Setpoint: current and future work”.
Internal report, available at
http://docs.codehaus.org/download/attachments/48359/SetPointWithPh
oenix.pdf?version=1, 2006.

[Arsanjani03] A. Arsanjani, B. Hailpern, J. Martin, P. Tarr, "Web Services: Promises
and Compromises". Queue vol. 1, pp. 48-58, ACM, April 2003.

[Carver02] L. Carver, "Building Real-World Applications with Aspect-Oriented
Modules and Hyper/J". MSc Thesis, University of California, San
Diego, 2002.

[Clarke99] S. Clarke, W. Harrison, H. Ossher, P. Tarr, "Subject-Oriented Design:
Towards Improved Alignment of Requirements, Design, and Code".
OOPSLA’99, pp. 325-339, ACM Press, 1999.

[CSharp05] "C# Programming Guide". Microsoft, http://msdn2.microsoft.com/en-
us/library/67ef8sbd(VS.80).aspx, 2005.

[Dias06] T. Dias, A. Moreira, "Hyper/Net: MDSoC Support for .NET".
Workshop of Aspect-Oriented Software Development, JISBD 2006,
Sitges, Spain, October 2006.

[Dias07] T. Dias, "Design Patterns & MDSoC: Casos de uso em Software ITS".
3rd Brisa ITS Workshop, São Domingos de Rana, Portugal, February
2007.

[Dijkstra74] E. Dijkstra, "On the role of scientific thought". EWD 447, available at
http://www.cs.utexas.edu/users/EWD/index04xx.html, Neuen, The
Netherlands, 1974.

[Ecma02] ECMA, "ECMA-335: Common Language Infrastructure (CLI) Partition
III: CIL Instruction Set". ECMA (European Association for
Standardizing Information and Communication Systems), 2002.

[France03] R. France, G. Georg, I. Ray, "Supporting Multi-Dimensional Separation
of Design Concerns". Proceedings of the Third International Workshop
on Aspect-Oriented Modeling, 2003.

[González05] C. González, J. Murillo, P. Amaya, "Aspect-oriented analysis: A MDA
based approach". In "Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design" edited by Clements et al., March
2005.

[Hailpern01] B. Hailpern, P. Tarr, "Software Engineering for Web Services: A Focus
on Separation of Concerns". OOPSLA Workshop on Object-Oriented

136

Web Services, available as IBM Research Report, RC22184, IBM,
2001.

[Hantelmann06] A. Hantelmann, C. Zhang, "Adding Aspect-Oreinted Programming
Features to C#.NET by using Multidimensional Separation of Concerns
(MDSOC) Approach". Journal of Object Technology, 5(4), pp. 59-89,
2006.

[Harrison93] W. Harrison, H. Ossher, "Subject-oriented programming: a critique of
pure objects". OOPSLA’93, pp. 411-428, ACM Press, 1993.

[Herrmann00] S. Herrmann, M. Mezini, "On the Need for a Unified MDSOC Model:
Experiences from Constructing a Modular Software Engineering
Environment". Position paper for the OOPSLA 2000 workshop on
Advanced Separation of Concerns, 2000.

[Hill06] P. Hill, S. Holland, R. Laney, "Symmetric Composition of Musical
Concerns". AOSD'06 Proceedings, pp. 226-236, ACM Press, 2006.

[Hirschfeld03] R. Hirschfeld, K. Østerbye, M. Wagner, "System Integration Using
AOP". In Proceedings of the 3rd Workshop of the German Computer
Society (GI) on AOSD, Essen, Germany, 2003.

[Holm03] P. Holm, M. Krüger, B. Spuida, "Dissecting a C# Application: Inside
SharpDevelop". Wrox Press, 2003.

[HyperJ03] P. Tarr, H. Ossher, V. Kruskal, M. Kaplan, “Hyper/J website at IBM
alphaWorks”. http://www.alphaworks.ibm.com/tech/hyperj, IBM, 2003.

[IEEE90] IEEE, “IEEE Standard Glossary of Software Engineering
Terminology", Definition for “Software Engineering”, pp. 67. IEEE,
New York, September 1990.

[Kande00] M. Kandé, A. Strohmeier, "On The Role of Multi-Dimensional
Separation of Concerns in Software Architecture". OOPSLA 2000
workshop on Advanced Separation of Concerns, Minneapolis,
Minnesota USA, October 2000.

[Kande03] M. Kandé, "A concern-oriented approach to software architecture".
PhD Thesis, Swiss Federal Institute of Technology (EPFL), Lausanne,
Switzerland, 2003.

[Lasky03] J. Lasky, J. Sonstein, "Untangling Regulatory Text: Multidimensional
Separation of Concerns and Task-Oriented Linking". Presented at ACM
HyperText, 2003.

[Liberty01] J. Liberty, "Chapter 18 – Attributes and Reflection". In "Programming
C#", 1rst Edition, O'Reilly, 2001.

[Lourenci02] A. Lourenci, "Three-dimensionality emerges out of early aspects".
AOSD’02, 2002.

[Lozano06] A. Lozano, M. Wermelinger, B. Nuseibeh, "Degradation archaeology:
studying software flaws’ evolution". ERCIM Workshop on Software
Evolution, 2006.

[Memmert02] J. Memmert, "Designing with Cosmos". Workshop on Aspect Oriented
Design, AOSD’02, 2002.

[NRefactory05] NRefactory tutorial video,
http://laputa.sharpdevelop.net/NRefactoryTutorialVideo.aspx, 2005.

[NUnit07] NUnit Website, http://www.nunit.org, 2007.

137

[Ossher96] H. Ossher, M. Kaplan, A. Katz, W. Harrison, V. Kruskal, "Specifying
subject-oriented composition". Theory and Practice of Object Systems,
Vol. 2, Issue 3, pp. 179-202, 1996.

[Ossher99] H. Ossher, P. Tarr, "Multi-dimensional separation of concerns in
hyperspace". Technical Report RC 21452(96717)16APR99, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY., 1999.

[Ossher00] H. Ossher, P. Tarr, "Multi-Dimensional Separation of Concerns and
The Hyperspace Approach". Symposium on Software Architectures and
Component Technology: The State of the Art in Software
Development, 2000.

[Ossher01] H. Ossher, P. Tarr, "Using multidimensional separation of concerns to
(re)shape evolving software". Comunications of the ACM, Vol. 44,
Issue 10, pp. 43-50, October 2001.

[Philippow03] I. Philippow, M. Riebisch, K. Boellert "The Hyper/UML Approach for
Feature Based Software Design". Workshop on Modeling With UML,
AOSD’03, 2003.

[Rouvellou00] I. Rouvellou, S. Sutton, S. Tai, "Multidimensional Separation of
Concerns in Middleware". Workshop on Multi-Dimensional Separation
of Concerns in Software Engineering, 22nd ICSE, pp. 106-111, 2000.

[SharpDevelop07] SharpDevelop Website, http://www.sharpdevelop.net/, 2007.

[Stoecker04] M. Stoecker, "Visual Studio 2005 Class Designer".
http://msdn2.microsoft.com/en-us/library/aa288743(VS.71).aspx,
Visual Studio Technical Articles, Microsoft, May 2004.

[Stuikys02] V. Štuikys, R. Damaševicius, G. Ziberkas, G. Majauskas, "Soft IP
Design Framework Using Metaprogramming Techniques". In "Design
and Analysis of Distributed Embedded Systems", Kluwer Academic
Publishers, pp. 257-266, 2002.

[Sutton02] S. Sutton, P. Tarr, "Aspect-Oriented Design Needs Concern Modeling".
Position paper in AOSD’02, 2002.

[Tarr99] P. Tarr, H. Ossher, W. Harrison, S.M. Sutton, "N Degrees of
Separation: Multi-Dimensional Separation of Concerns". 21st ICSE, pp.
107-119, May 1999.

[Tarr01] P Tarr, H. Ossher, "Hyper/J User and Installation Manual".
http://www.research.ibm.com/hyperspace, IBM Corporation, 2001.

[Thai03] T. Thai, H. Lam, "Chapter 2 – The Common Language Runtime". In
".NET Framework Essentials", 3rd Edition, O'Reilly, 2003.

[WikiCS] Wikipedia contributors, “C#”. Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/C_Sharp, September 2007.

[WikiIS] Wikipedia contributors, “IntelliSense”. Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/IntelliSense, September
2007.

[WikiJa] Wikipedia contributors, “Java (programming language)”. Wikipedia,
The Free Encyclopedia,
http://en.wikipedia.org/wiki/Java_%28programming_language%29,
September 2007.

138

[WikiNL] Wikipedia contributors, “.NET Languages”. Wikipedia, The Free
Encyclopedia,
http://en.wikipedia.org/wiki/Microsoft_.NET_Languages, September
2007.

[WikiNF] Wikipedia contributors, “.NET Framework”. Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/.NET_Framework,
September 2007.

[WikiVB] Wikipedia contributors, “Visual Basic .NET”. Wikipedia, The Free
Encyclopedia, http://en.wikipedia.org/wiki/Visual_Basic_.NET,
September 2007.

139

Apendix I

Hyper/Net source code

This appendix lists the Hyper/Net source code organized according to the hyperspace
presented in Section 8.2. The code is also documented in that same section.

I.1 Hyper/Net Attribute Class Library

I.1.1 Language Features – Bracket Concern

namespace HyperNet

{

 public delegate void BeforeMethod(MethodBase method, params object[]

parameters);

 public delegate object AfterMethod(MethodBase method, object returnValue,

params object[] parameters);

 /// <summary>

 /// Defines the bracketing of a method

 /// </summary>

 [AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple

= false)]

 public class MethodBracket : System.Attribute

 {

 public readonly BeforeMethod beforeMethod;

 public readonly AfterMethod afterMethod;

 public readonly string beforeMethodByName;

 public readonly string afterMethodByName;

 /// <summary>

 /// Creates a new method bracket Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 public MethodBracket(BeforeMethod beforeMethod, AfterMethod

afterMethod)

 {

 this.beforeMethod = beforeMethod;

140

 this.afterMethod = afterMethod;

 }

 /// <summary>

 /// Creates a new method bracket Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 public MethodBracket(string beforeMethod, string afterMethod)

 {

 this.beforeMethodByName = beforeMethod;

 this.afterMethodByName = afterMethod;

 }

 }

}

I.1.2 Language Features – Merge Concern

namespace HyperNet

{

 /// <summary>

 /// Distinguishes between different method merge actions

 /// </summary>

 public enum MethodMergeAction { Override, Merge };

 public delegate object MethodMergeResult (params object[]

resultsToMerge);

 /// <summary>

 /// Defines the action used for merging methods

 /// </summary>

 [AttributeUsage(AttributeTargets.Method, Inherited = true, AllowMultiple

= false)]

 public class MethodMerge : System.Attribute

 {

 public readonly MethodMergeAction mergeAction;

 public readonly int priority = -1;

 public readonly MethodMergeResult mergeResult = null;

 public readonly string mergeResultByName = null;

 /// <summary>

 /// Creates a new merge action Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 public MethodMerge(MethodMergeAction mergeAction)

 {

 this.mergeAction = mergeAction;

 }

 /// <summary>

 /// Creates a new merge action Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 /// <param name="priority">Method priority relative to the merged

methods</param>

 public MethodMerge(MethodMergeAction mergeAction, int priority)

 {

 this.mergeAction = mergeAction;

 this.priority = priority;

141

 }

 /// <summary>

 /// Creates a new merge action Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 /// <param name="priority">Method priority relative to the merged

methods</param>

 public MethodMerge(MethodMergeAction mergeAction, int priority,

MethodMergeResult mergeResult)

 {

 this.mergeAction = mergeAction;

 this.priority = priority;

 this.mergeResult = mergeResult;

 }

 /// <summary>

 /// Creates a new merge action Attribute

 /// </summary>

 /// <param name="mergeAction">Defines the action used for merging this

method </param>

 /// <param name="priority">Method priority relative to the merged

methods</param>

 public MethodMerge(MethodMergeAction mergeAction, int priority, string

mergeResultByName)

 {

 this.mergeAction = mergeAction;

 this.priority = priority;

 this.mergeResultByName = mergeResultByName;

 }

 }

}

I.2 Hyper/Net Console Application

I.2.1 Features – Flow Control

namespace HyperNet

{

 partial class MainClass

 {

 public static int Run(string code,

 SupportedLanguage sourceLang,

 SupportedLanguage outputLang,

 string outputFile)

 {

 // Multi-language support

 SupportedLanguage parseLanguage = sourceLang;

 SourceCode source = new SourceCode(code, parseLanguage);

 // Move references to the beginning of the code string

 source.FactorizeImports();

 // Parse the code

 if(!source.Parse())

142

 {

 Console.Write("Error while parsing: " + source.ParseErrors);

 string errorFile = outputFile + ".error";

 Console.Write(" Saved Hyper/Net intermediate code to " +

errorFile);

 SaveToFile(errorFile, source.ToString());

 Console.ReadLine();

 return -1;

 }

 else

 {

 //Console.WriteLine("Parse OK.");

 // Merge namespaces

 source.MergeNamespaces();

 // Merge partial types

 source.MergePartialTypes();

 // Merge methods

 source.MergeMethods();

 // Apply bracketing

 source.ApplyBracketing();

 // Get the output in the desired language

 string programOutput = source.GetCode(outputLang);

 // Save to file

 SaveToFile(outputFile, programOutput);

 //Console.WriteLine(programOutput);

 return 0;

 }

 }

 public static int Main(string[] args)

 {

 if(args.Length != 3)

 {

 foreach (string arg in args)

 Console.WriteLine(arg);

 Console.WriteLine("usage: HyperNet <input project base

directory>\r\n"

 +"\t<input project file> <output file

name>\r\n\r\n"

 +@"Example HyperNet.exe

d:\projects\HousePlantEditor\"+"\r\n\t"

 +@"HousePlant.csproj

d:\projects\HousePlantEditor\Output\HousePlant.cs");

 return -2;

 }

 int ret;

 // TODO: The main try catch approach is only good for a prototype

 try

 {

 // Will contain the merge of the source code

143

 string projectBaseDir = args[0] + "\\";

 string projectFile = args[1];

 string targetFile = args[2];

 string merged_source_code =

LoadMergedSourceCode(projectBaseDir, projectFile, targetFile);

 ret = Run(merged_source_code,

 SupportedLanguage.CSharp,

 SupportedLanguage.CSharp,

 targetFile);

 }

 catch(Exception ex)

 {

 Console.WriteLine("Error: " + ex.Message);

 //Console.WriteLine(ex.StackTrace);

 Console.ReadLine();

 ret = -1;

 }

 return ret;

 }

 }

}

I.2.2 Features – Input

using ICSharpCode.SharpDevelop.Project;

namespace HyperNet

{

 partial class MainClass

 {

 private static string LoadMergedSourceCode(string projectBaseDir,

string projectFile, string targetFile)

 {

 // Will contain the merge of the source code

 string merged_source_code = "";

 // Get all source files from the project file

 FileStream projFile = File.Open(projectBaseDir + projectFile,

FileMode.Open);

 /* Not used: XmlDocument approach for Project file editing:

 XmlDocument doc = new XmlDocument();

 doc.Load(projFile);

 XmlNodeList compiles = doc.GetElementsByTagName("Compile");

 foreach (XmlNode compile in compiles)

 {

 // Read the source file content

 FileStream sourceFile =

 File.Open(projectBaseDir +

compile.Attributes["Include"].InnerText, FileMode.Open);

 StreamReader sr = new StreamReader(sourceFile);

 merged_source_code += sr.ReadToEnd();

 sr.Close();

 sourceFile.Close();

 }

144

 NameXmlElements(doc, compiles, "EmbeddedResource_Temp");

 XmlNodeList embeddeds =

doc.GetElementsByTagName("EmbeddedResource");

 NameXmlElements(doc, embeddeds, "Compile");

 XmlNodeList compiles_temp =

doc.GetElementsByTagName("EmbeddedResource_Temp");

 NameXmlElements(doc, compiles_temp, "EmbeddedResource");

 projFile.Seek(0, SeekOrigin.Begin);

 doc.Save(projFile);

 //doc.Save(File.Create(projectBaseDir + projectFile +

".hn.csproj"));

 */

 XmlReader projReader = XmlReader.Create(projFile);

 while (projReader.Read())

 {

 if (projReader.NodeType == XmlNodeType.Element

 && projReader.Name.Equals("EmbeddedResource"))

 {

 FileStream sourceFile =

 File.Open(projectBaseDir +

projReader.GetAttribute("Include"), FileMode.Open);

 StreamReader sr = new StreamReader(sourceFile);

 merged_source_code += sr.ReadToEnd();

 sr.Close();

 sourceFile.Close();

 }

 }

 projReader.Close();

 projFile.Close();

 // Save a copy of the merged source code (for debug purposes)

 SaveToFile(targetFile + ".original", merged_source_code);

 return merged_source_code;

 }

 /*

 private static void NameXmlElements(XmlDocument doc, XmlNodeList

nodes, string newName)

 {

 for (int i = nodes.Count - 1; i >= 0; i--)

 {

 XmlNode node = nodes[i];

 // Replace the element tag

 XmlElement compToEmbedded = doc.CreateElement(newName,

node.NamespaceURI);

 foreach (XmlAttribute att in node.Attributes)

compToEmbedded.Attributes.Append((XmlAttribute)att.Clone());

 foreach (XmlNode child in node.ChildNodes)

 {

 XmlElement childElem = doc.CreateElement(child.Name,

child.NamespaceURI);

 childElem.InnerText = child.InnerText;

 compToEmbedded.PrependChild(childElem);

 }

 node.ParentNode.ReplaceChild(compToEmbedded, node);

 }

 }

145

 */

 }

}

I.2.3 Features – Kernel

namespace HyperNet

{

 public partial class SourceCode

 {

 string sourceCode;

 public readonly SupportedLanguage Language;

 /* Overriden in Feature.Output

 public string Code

 {

 get { return sourceCode; }

 }

 */

 public SourceCode(string sourceCode, SupportedLanguage language)

 {

 this.sourceCode = sourceCode;

 this.Language = language;

 }

 public override string ToString()

 {

 return this.sourceCode;

 }

 }

}

I.2.4 Features – Output

namespace HyperNet

{

 partial class MainClass

 {

 private static void SaveToFile(string fName, string code)

 {

 if(fName != null)

 {

 FileStream outFile = File.Open(fName, FileMode.Create);

 StreamWriter outSw = new StreamWriter(outFile);

 outSw.Write(code);

 outSw.Close();

 outFile.Close();

 }

 }

 }

}

namespace HyperNet

{

 public partial class SourceCode

 {

 public string Code

146

 {

 get

 {

 if(this.parser != null)

 return GetCode(this.Language);

 else

 return sourceCode;

 }

 }

 }

}

I.2.5 Features – Parse Preparations

namespace HyperNet

{

 public partial class SourceCode

 {

 public void FactorizeImports()

 {

 Hashtable referenceHT = new Hashtable();

 string searchStr = "using ";

 string delimiter = ";";

 if(this.Language == SupportedLanguage.VBNet)

 {

 searchStr = "Imports ";

 delimiter = "\n";

 }

 int refIndex, lastFound = 0;

 while ((refIndex = this.sourceCode.IndexOf(searchStr,

lastFound)) != -1)

 {

 int endRefIndex = this.sourceCode.IndexOf(delimiter,

refIndex + searchStr.Length);

 if (endRefIndex - refIndex + 1 > 0)

 {

 string reference = this.sourceCode.Substring(refIndex,

endRefIndex - refIndex + 1);

 //reference.Replace(" ", "");

 this.sourceCode = this.sourceCode.Substring(0,

Math.Max(refIndex - 1, 0))

 + this.sourceCode.Substring(endRefIndex + 1);

 if (!referenceHT.Contains(reference))

 referenceHT.Add(reference, reference);

 }

 else

 lastFound = refIndex + 1;

 }

 string allDistinctReferences = "";

 foreach(string reference in referenceHT.Keys)

 {

 allDistinctReferences += reference;

 }

147

 this.sourceCode = allDistinctReferences + this.sourceCode;

 }

 }

}

I.2.6 Features – Parsing

using ICSharpCode.NRefactory.Parser;

using ICSharpCode.NRefactory.Parser.AST;

using ICSharpCode.NRefactory.PrettyPrinter;

namespace HyperNet

{

 public partial class SourceCode

 {

 IParser parser = null;

 public string ParseErrors

 {

 get

 {

 if(parser != null)

 return parser.Errors.ErrorOutput;

 else

 return null;

 }

 }

 public bool Parse()

 {

 StringReader sr = new StringReader(this.Code);

 parser = ParserFactory.CreateParser(this.Language, sr);

 parser.Parse();

 if(parser.Errors.count > 0)

 return false;

 else

 return true;

 }

 public string GetCode(SupportedLanguage outputLanguage)

 {

 if (parser == null)

 {

 throw new Exception("Parser not initialized, no code can be

generated.");

 }

 else

 {

 IOutputASTVisitor outputVis;

 if (outputLanguage == SupportedLanguage.CSharp)

 outputVis = new CSharpOutputVisitor();

 else

 outputVis = new VBNetOutputVisitor();

 this.parser.CompilationUnit.AcceptVisitor(outputVis, null);

 return outputVis.Text;

 }

 }

 }

}

148

I.2.7 Features – Namespace Composition

using ICSharpCode.NRefactory.Parser;

using ICSharpCode.NRefactory.Parser.AST;

namespace HyperNet

{

 public partial class SourceCode

 {

 /// <summary>

 /// Merge all repeated namespaces ocurring in the parse tree

 /// </summary>

 public void MergeNamespaces()

 {

 Hashtable nsHT = new Hashtable();

 List<NamespaceDeclaration> remNSList = new

List<NamespaceDeclaration>();

 foreach(INode inode in this.parser.CompilationUnit.Children)

 {

 if(inode is NamespaceDeclaration)

 {

 NamespaceDeclaration ns = (NamespaceDeclaration)inode;

 if(!nsHT.Contains(ns.Name))

 {

 nsHT.Add(ns.Name, ns);

 }

 else

 {

 NamespaceDeclaration mainNS =

(NamespaceDeclaration)nsHT[ns.Name];

 foreach(INode node in ns.Children)

 {

 mainNS.AddChild(node);

 }

 remNSList.Add(ns);

 }

 }

 }

 foreach(NamespaceDeclaration ns in remNSList)

 {

 this.parser.CompilationUnit.Children.Remove(ns);

 }

 }

 }

}

I.2.8 Features – Partial Type Composition

using ICSharpCode.NRefactory.Parser;

using ICSharpCode.NRefactory.Parser.AST;

namespace HyperNet

{

 public partial class SourceCode

 {

 private List<AttributeSection>

MergeAttributeSections(List<AttributeSection> ass1, List<AttributeSection>

ass2)

149

 {

 List<AttributeSection> ret = new List<AttributeSection>();

 foreach (AttributeSection as1 in ass1)

 {

 AttributeSection asNew = new

AttributeSection(as1.AttributeTarget, new

List<ICSharpCode.NRefactory.Parser.AST.Attribute>());

 foreach (ICSharpCode.NRefactory.Parser.AST.Attribute at1 in

as1.Attributes)

 {

 bool alreadyPresent = false;

 foreach (AttributeSection as2 in ass2)

 {

 foreach

(ICSharpCode.NRefactory.Parser.AST.Attribute at2 in as2.Attributes)

 {

 if (at2.Name == at1.Name)

 alreadyPresent = true;

 }

 }

 if(!alreadyPresent)

 asNew.Attributes.Add(at1);

 }

 if (asNew.Attributes.Count > 0)

 ret.Add(asNew);

 }

 foreach (AttributeSection as2 in ass2)

 {

 ret.Add(as2);

 }

 return ret;

 }

 public void MergePartialTypes()

 {

 foreach(INode inode in parser.CompilationUnit.Children)

 {

 if(inode is NamespaceDeclaration)

 {

 Hashtable ptHT = new Hashtable();

 List<TypeDeclaration> remPTList = new

List<TypeDeclaration>();

 foreach (INode nsNode in inode.Children)

 {

 if(nsNode is TypeDeclaration)

 {

 TypeDeclaration td = (TypeDeclaration)nsNode;

 if(td.Modifier.CompareTo(Modifier.Partial) >= 0)

 {

 if(!ptHT.Contains(td.Name))

 {

 ptHT.Add(td.Name, td);

 td.Modifier -= Modifier.Partial;

 }

 else

 {

 TypeDeclaration mainTD = (TypeDeclaration)ptHT[td.Name];

150

 foreach(INode node in td.Children)

 {

 mainTD.AddChild(node);

 }

 foreach(TypeReference tr in td.BaseTypes)

 {

 bool referenceExists = false;

 foreach(TypeReference existingTr in mainTD.BaseTypes)

 {

 if(existingTr.SystemType.Equals(tr.SystemType))

 {

 referenceExists = true;

 break;

 }

 }

 if(!referenceExists)

 mainTD.BaseTypes.Add(tr);

 }

 // Copy attributes

 mainTD.Attributes =

this.MergeAttributeSections(td.Attributes, mainTD.Attributes);

 td.Modifier -= Modifier.Partial;

 mainTD.Modifier |= td.Modifier;

 remPTList.Add(td);

 }

 }

 }

 }

 foreach(TypeDeclaration td in remPTList)

 {

 inode.Children.Remove(td);

 }

 }

 }

 }

 }

}

I.2.9 Language Features – Bracket Concern

using ICSharpCode.NRefactory.Parser;

using ICSharpCode.NRefactory.Parser.AST;

namespace HyperNet

{

 public partial class SourceCode

 {

 public void InsertInMethodBody(MethodDeclaration method, int pos, INode

node)

 {

 if(pos >= method.Body.Children.Count)

 method.Body.AddChild(node);

 else

 {

 List<INode> list = new List<INode>();

151

 int numElemsBody = method.Body.Children.Count;

 for(int i = numElemsBody - 1; i >= pos; i--)

 {

 list.Add(method.Body.Children[i]);

 method.Body.Children.RemoveAt(i);

 }

 method.Body.AddChild(node);

 for(int i = list.Count - 1; i >= 0; i--)

 {

 method.Body.AddChild(list[i]);

 list.RemoveAt(i);

 }

 }

 }

 /// <summary>

 /// Applies bracketing

 /// </summary>

 public void ApplyBracketing()

 {

 foreach(INode inode in parser.CompilationUnit.Children)

 {

 if(inode is NamespaceDeclaration)

 {

 foreach(INode nsNode in inode.Children)

 {

 if(nsNode is TypeDeclaration)

 {

 TypeDeclaration td = (TypeDeclaration)nsNode;

 foreach(INode classNode in td.Children)

 {

 if(classNode is MethodDeclaration)

 {

 MethodDeclaration method = (MethodDeclaration)classNode;

 // Get the method bracketing attributes (if any)

 MethodBracket bracketAtt =

 (MethodBracket)GetAttribute(method,

typeof(MethodBracket));

 // Remove the attribute

 this.RemoveAttribute(method, typeof(MethodBracket));

 if(bracketAtt != null)

 {

 string baseMethodInfoID = "_method_BasicInfo";

 if(bracketAtt.beforeMethodByName != null

 || bracketAtt.afterMethodByName != null)

 {

 FieldReferenceExpression getCurrentMethod =

 new FieldReferenceExpression(

 new

FieldReferenceExpression(

new FieldReferenceExpression(

new IdentifierExpression(

"System"), "Reflection"), "MethodBase"), "GetCurrentMethod");

152

 InvocationExpression getCurrentMethod_Invocation =

 new InvocationExpression(getCurrentMethod, null);

 VariableDeclaration varDeclaration =

 new VariableDeclaration(baseMethodInfoID,

getCurrentMethod_Invocation,

 new

TypeReference("System.Reflection.MethodBase"));

 InsertInMethodBody(method, 0, new

LocalVariableDeclaration(varDeclaration));

 }

 if(bracketAtt.beforeMethodByName != null)

 {

 FieldReferenceExpression methodName =

 new FieldReferenceExpression(new

ThisReferenceExpression(),

bracketAtt.beforeMethodByName);

 InvocationExpression ie = new

InvocationExpression(methodName, null);

 ie.Arguments.Add(new

IdentifierExpression(baseMethodInfoID));

 foreach (ParameterDeclarationExpression param in

method.Parameters)

 {

 Expression expr = new

IdentifierExpression(param.ParameterName);

 ie.Arguments.Add(expr);

 }

 InsertInMethodBody(method, 1, new

StatementExpression(ie));

 }

 if(bracketAtt.afterMethodByName != null)

 {

 int num_return_stmt = 0;

 foreach(INode metNode in method.Body.Children)

 {

 if(metNode is ReturnStatement)

 {

 num_return_stmt++;

 ReturnStatement returnStmt =

(ReturnStatement)metNode;

 Expression retVal = returnStmt.Expression;

 FieldReferenceExpression methodName =

 new FieldReferenceExpression(new

ThisReferenceExpression(),

bracketAtt.afterMethodByName);

 InvocationExpression ie = new

InvocationExpression(methodName, null);

 ie.Arguments.Add(new

IdentifierExpression(baseMethodInfoID));

 ie.Arguments.Add(retVal);

 foreach (ParameterDeclarationExpression param in

method.Parameters)

 {

153

 Expression expr = new

IdentifierExpression(param.ParameterName);

 ie.Arguments.Add(expr);

 }

 returnStmt.Expression = new

CastExpression(method.TypeReference, ie, CastType.Cast);

 }

 }

 if(num_return_stmt == 0)

 {

 FieldReferenceExpression methodName =

 new FieldReferenceExpression(new

ThisReferenceExpression(),

bracketAtt.afterMethodByName);

 InvocationExpression ie = new

InvocationExpression(methodName, null);

 ie.Arguments.Add(new

IdentifierExpression(baseMethodInfoID));

 ie.Arguments.Add(new PrimitiveExpression(null,

"null"));

 foreach (ParameterDeclarationExpression param in

method.Parameters)

 {

 Expression expr = new

IdentifierExpression(param.ParameterName);

 ie.Arguments.Add(expr);

 }

 method.Body.AddChild(new StatementExpression(ie));

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

I.2.10 Language Features – Merge Concern

using ICSharpCode.NRefactory.Parser;

using ICSharpCode.NRefactory.Parser.AST;

namespace HyperNet

{

 /*

 public class Invocation : IComparable

 {

 public readonly int Priority;

 public readonly VariableDeclaration Variable;

 public Invocation(int priority, VariableDeclaration variable)

 {

154

 this.Priority = priority;

 this.Variable = variable;

 }

 public int CompareTo(object inv2)

 {

 if(inv2 is Invocation)

 return this.Priority.CompareTo(((Invocation)inv2).Priority);

 else

 return -1;

 }

 }

 */

 public partial class SourceCode

 {

 private string GetAssemblyQualifiedName(string typeName, Type

assemblyType)

 {

 return typeName + "," + assemblyType.Assembly.FullName;

 }

 private InvocationExpression CreateMethodCall(MethodDeclaration method)

 {

 FieldReferenceExpression methodName = new

FieldReferenceExpression(new ThisReferenceExpression(),

method.Name);

 InvocationExpression ie = new InvocationExpression(methodName, null);

 foreach (ParameterDeclarationExpression param in method.Parameters)

 {

 Expression expr = new IdentifierExpression(param.ParameterName);

 if (param.ParamModifier == ParamModifier.Ref)

 {

 expr = new DirectionExpression(FieldDirection.Ref, expr);

 }

 ie.Arguments.Add(expr);

 }

 return ie;

 }

 private bool EqualMethodSignatures(MethodDeclaration method1,

MethodDeclaration method2)

 {

if(!method1.TypeReference.SystemType.Equals(method2.TypeReference.SystemTyp

e))

 return false;

 if(method1.Parameters.Count != method2.Parameters.Count)

 return false;

 for(int i = 0; i < method1.Parameters.Count; i++)

 {

if(!method1.Parameters[i].TypeReference.SystemType.Equals(method2.Parameter

s[i].TypeReference.SystemType))

 return false;

 }

 return true;

 }

 /// <summary>

155

 /// Returns the first attribute found with the specified type

 /// </summary>

 /// <param name="method">Method declaration to be searched</param>

 /// <returns></returns>

 private object GetAttribute(MethodDeclaration method, Type

requiredAttributeType)

 {

 foreach(AttributeSection aSec in method.Attributes)

 {

 foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in

aSec.Attributes)

 {

 // Hyper/Net attributes belong to a different Assembly.

Need to search for these types there.

 string attAssemblyQualifiedName =

GetAssemblyQualifiedName(att.Name, typeof(MethodMerge));

 Type attType = Type.GetType(attAssemblyQualifiedName);

 if (attType != null &&

attType.Equals(requiredAttributeType))

 {

 ArrayList list = new ArrayList();

 foreach(Expression arg in att.PositionalArguments)

 {

 if(arg is FieldReferenceExpression)

 {

 FieldReferenceExpression fre =

(FieldReferenceExpression)arg;

 string argType;

 string argValue;

 if(fre.TargetObject is IdentifierExpression)

 {

 argType =

((IdentifierExpression)fre.TargetObject).Identifier;

 argValue = fre.FieldName;

 }

 else if(fre.TargetObject is FieldReferenceExpression)

 {

 Expression targetExp = fre.TargetObject;

 argType = "";

 argValue = fre.FieldName;

 while(targetExp is FieldReferenceExpression)

 {

 FieldReferenceExpression internalFre =

(FieldReferenceExpression)targetExp;

 argType = internalFre.FieldName +

 (argType.Equals(String.Empty) ? "" : "." + argType);

 targetExp = internalFre.TargetObject;

 }

 if(targetExp is IdentifierExpression)

 argType = ((IdentifierExpression)targetExp).Identifier

+ "." + argType;

 else

 throw new Exception("Internal error while getting

attribute hierarchy.");

 }

 else

 {

 throw new Exception("Error in attribute "+attType+"

definition with "+fre+".");

156

 }

 // Hyper/Net attributes belong to a

different Assembly. Need to search for these types there.

 string argAssemblyQualifiedName =

GetAssemblyQualifiedName(argType, typeof(MethodMergeAction));

 Type argRealType =

Type.GetType(argAssemblyQualifiedName);

 if(argRealType == null)

 throw new Exception("Cannot find the Type '"+argType+"'

of a parameter for "+requiredAttributeType);

 if(argRealType.IsEnum)

 {

 list.Add(Enum.Parse(argRealType, argValue));

 }

 else

 {

 Console.WriteLine(argValue);

 Console.WriteLine(argRealType);

 string[] parameters = { argValue };

 Type[] parameterTypes = { argValue.GetType() };

 MethodInfo parseMethod = argRealType.GetMethod("Parse",

parameterTypes);

 list.Add(parseMethod.Invoke(null, parameters));

 }

 }

 else if(arg is PrimitiveExpression)

 {

 PrimitiveExpression prim = (PrimitiveExpression)arg;

 list.Add(prim.Value);

 }

 else if(arg is UnaryOperatorExpression

 && ((UnaryOperatorExpression)arg).Expression is

PrimitiveExpression)

 {

 UnaryOperatorExpression opExp =

(UnaryOperatorExpression)arg;

 PrimitiveExpression prim =

(PrimitiveExpression)opExp.Expression;

 // TODO: Change the method of processing operator types

 if(opExp.Op == UnaryOperatorType.Minus

 && prim.Value.GetType().Equals(typeof(int)))

 list.Add(- (int)prim.Value);

 else if(opExp.Op == UnaryOperatorType.Not

 && prim.Value.GetType().Equals(typeof(bool)))

 list.Add(! (bool)prim.Value);

 else

 list.Add(prim.Value);

 }

 // this is a literal, the attribute should provide a

constructor with a string instead

 else if(arg is IdentifierExpression)

 {

 IdentifierExpression ie = (IdentifierExpression)arg;

 list.Add(ie.Identifier);

 }

 else

 {

157

 Console.WriteLine("Unexpected attributte argument: " + arg

+ ".");

 }

 }

 return Activator.CreateInstance(requiredAttributeType,

list.ToArray());

 }

 }

 }

 return null;

 }

 /// <summary>

 /// Remove all attributes found with the specified type

 /// </summary>

 /// <param name="method">Method declaration to be searched</param>

 private void RemoveAttribute(MethodDeclaration method, Type

requiredAttributeType)

 {

 List<AttributeSection> remASecList =

 new List<AttributeSection>();

 foreach(AttributeSection aSec in method.Attributes)

 {

 List<ICSharpCode.NRefactory.Parser.AST.Attribute> remAttList =

 new List<ICSharpCode.NRefactory.Parser.AST.Attribute>();

 foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in

aSec.Attributes)

 {

 // Hyper/Net attributes belong to a different Assembly.

Need to search for these types there.

 string assemblyQualifiedName = att.Name + "," +

typeof(MethodMerge).Assembly.FullName;

 Type attType = Type.GetType(assemblyQualifiedName);

 if(attType != null && attType.Equals(requiredAttributeType))

 {

 remAttList.Add(att);

 }

 }

 foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att in

remAttList)

 aSec.Attributes.Remove(att);

 remAttList.Clear();

 if(aSec.Attributes.Count == 0)

 remASecList.Add(aSec);

 }

 foreach(AttributeSection aSec in remASecList)

 method.Attributes.Remove(aSec);

 }

 /// <summary>

 /// Merges methods

 /// </summary>

 public void MergeMethods()

 {

 foreach(INode inode in parser.CompilationUnit.Children)

 {

 if(inode is NamespaceDeclaration)

 {

158

 foreach(INode nsNode in inode.Children)

 {

 if(nsNode is TypeDeclaration)

 {

 Hashtable metHT = new Hashtable();

 List<MethodDeclaration> remMetList = new

List<MethodDeclaration>();

 List<MethodDeclaration> addMetList = new

List<MethodDeclaration>();

 TypeDeclaration td = (TypeDeclaration)nsNode;

 foreach(INode classNode in td.Children)

 {

 if(classNode is MethodDeclaration)

 {

 MethodDeclaration method = (MethodDeclaration)classNode;

 bool hasOverride = false;

 bool hasMerge = false;

 string originalMethodName = method.Name;

 // Step 1: Search for methods with the same name, at the

same level

 // and determine the action for Step 2

 int conflictNum = 0;

 foreach(INode neighbourClassNode in td.Children)

 {

 if(neighbourClassNode is MethodDeclaration

 && (neighbourClassNode == classNode

 ||

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName)

 &&

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method))))

 {

 MethodDeclaration neighbourMethod =

 ((MethodDeclaration)neighbourClassNode);

 conflictNum++;

 // Get the method merge attributes (if any)

 MethodMerge mergeAtt =

 (MethodMerge)GetAttribute(neighbourMethod,

typeof(MethodMerge));

 if(mergeAtt != null)

 {

 if(mergeAtt.mergeAction == MethodMergeAction.Merge)

 hasMerge = true;

 else if(mergeAtt.mergeAction ==

MethodMergeAction.Override)

 {

 if(hasOverride)

 throw new Exception(

 "More than one Override

merge action defined for method "

 + method.Name);

 hasOverride = true;

 }

 }

 }

 }

 if(hasOverride && hasMerge)

159

 throw new Exception("Method " + method.Name + " has

both overrides and merges defined.");

 else if(conflictNum == 1 && hasMerge)

 {

 RemoveAttribute(method, typeof(MethodMerge));

 }

 else if(hasOverride)

 {

 // Step 2: Remove all methods but the Override one

 foreach(INode neighbourClassNode in td.Children)

 {

 if(neighbourClassNode is MethodDeclaration

 && (neighbourClassNode == classNode

 ||

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName)

 &&

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method))))

 {

 MethodDeclaration neighbourMethod =

 ((MethodDeclaration)neighbourClassNode);

 // Get the method merge attributes (if any)

 MethodMerge mergeAtt =

 (MethodMerge)GetAttribute(neighbourMethod,

typeof(MethodMerge));

 if(mergeAtt == null || mergeAtt.mergeAction !=

MethodMergeAction.Override)

 {

 if(!remMetList.Contains(neighbourMethod))

 remMetList.Add(neighbourMethod);

 }

 else

 {

 //RemoveAttribute(neighbourMethod,

typeof(MethodMerge));

 }

 }

 }

 }

 else if(conflictNum > 1 && hasMerge)

 {

 conflictNum = 0;

 // A new method must be created, merging each of the

existing methods

 MethodDeclaration md = new

MethodDeclaration(originalMethodName,

method.Modifier,

method.TypeReference,

method.Parameters,

 null);

 md.Body = new BlockStatement();

 string resultMethodName = null;

 System.Collections.Generic.SortedList<int,

VariableDeclaration> varsList

 = new System.Collections.Generic.SortedList<int,

VariableDeclaration>();

160

 System.Collections.Generic.SortedList<int, INode>

invokeList

 = new System.Collections.Generic.SortedList<int,

INode>();

 // Step 2: Rename each method and make them be invoked

by a new method

 foreach(INode neighbourClassNode in td.Children)

 {

 if(neighbourClassNode is MethodDeclaration

 && (neighbourClassNode == classNode

 ||

(((MethodDeclaration)neighbourClassNode).Name.Equals(originalMethodName)

 &&

EqualMethodSignatures((MethodDeclaration)neighbourClassNode, method))))

 {

 MethodDeclaration neighbourMethod =

 ((MethodDeclaration)neighbourClassNode);

 conflictNum++;

 // Rename merged method

 neighbourMethod.Name = neighbourMethod.Name + "_" +

conflictNum;

 // Change modifier

 neighbourMethod.Modifier = Modifier.Private;

 // Invoke each partial method

 InvocationExpression call =

CreateMethodCall(neighbourMethod);

 // Get the method merge attributes (if any)

 MethodMerge mergeAtt =

 (MethodMerge)GetAttribute(neighbourMethod,

typeof(MethodMerge));

 int priority = -2;

 if(mergeAtt != null)

 {

 priority = mergeAtt.priority;

 if(mergeAtt.mergeResultByName != null)

 resultMethodName = mergeAtt.mergeResultByName;

 }

 // Compose the invocation with return value keeping

 INode invokeDecl;

 if(!method.TypeReference.ToString().Equals("void"))

 {

 // Declare variable to hold each partial result

 VariableDeclaration varDeclaration =

 new VariableDeclaration("res_"+conflictNum,

 call,

 method.TypeReference);

 // Add the variable to the list for returning

calculation

 try

 {

 varsList.Add(-priority, varDeclaration);

 }

 catch(Exception)

 {

 throw new Exception("MethodMerge: Adding

repeated priority entries.");

 }

161

 invokeDecl = new

LocalVariableDeclaration(varDeclaration);

 }

 else

 {

 invokeDecl = new StatementExpression(call);

 }

 // Add the invocation to the list for final order

addition to the body

 invokeList.Add(-priority, invokeDecl);

 // Remove HyperNet's own attributes

 RemoveAttribute(neighbourMethod,

typeof(MethodMerge));

 // Copy existing attributes to the new method

 foreach(AttributeSection asec in

neighbourMethod.Attributes)

 {

foreach(ICSharpCode.NRefactory.Parser.AST.Attribute att

 in asec.Attributes)

 {

 bool containsAtt = false;

 foreach(AttributeSection mdASec in

md.Attributes)

 {

foreach(ICSharpCode.NRefactory.Parser.AST.Attribute mdAtt

 in asec.Attributes)

 {

 // TODO: Obviously this check must ensure

mutch more,

 // the attribute itself should be

comparable

 if(mdAtt.Children.Count ==

att.Children.Count

 && mdAtt.Name.Equals(att.Name)

)

 {

 containsAtt = true;

 break;

 }

 }

 }

 if(!containsAtt)

 {

 if(md.Attributes.Count < 1)

 md.Attributes.Add(new AttributeSection("",

 new

List<ICSharpCode.NRefactory.Parser.AST.Attribute>()));

 md.Attributes[0].Attributes.Add(att);

 }

 }

 }

 // Remove all attributes from the merged method

 neighbourMethod.Attributes.Clear();

 }

 }

 // Add method invocation in order

 foreach(INode var in invokeList.Values)

162

 {

 md.Body.AddChild(var);

 }

 if(resultMethodName == null)

 {

 //ReturnStatement rs = new ReturnStatement(I

 }

 else

 {

 // Add the return calculation method

 FieldReferenceExpression methodName =

 new FieldReferenceExpression(new

ThisReferenceExpression(),

 resultMethodName);

 InvocationExpression ie =

 new InvocationExpression(methodName, null);

 foreach(VariableDeclaration var in varsList.Values)

 {

 Expression expr = new

IdentifierExpression(var.Name);

 ie.Arguments.Add(expr);

 }

 CastExpression ce = new

CastExpression(method.TypeReference, ie, CastType.Cast);

 ReturnStatement rs = new ReturnStatement(ce);

 md.Body.AddChild(rs);

 }

 // Add the new method for latter adding to the class

 addMetList.Add(md);

 }

 else if(conflictNum > 1)

 {

 throw new Exception("Method "+method.Name+" requires at

least one MergeMethod definition (Merge or Override).");

 }

 }

 }

 foreach(MethodDeclaration md in remMetList)

 {

 nsNode.Children.Remove(md);

 }

 foreach(MethodDeclaration md in addMetList)

 {

 nsNode.Children.Add(md);

 }

 // HyperNet attributes clean-up:

 // TODO: This shouldn't be necessary here...

 foreach(INode neighbourClassNode in td.Children)

 {

 if(neighbourClassNode is MethodDeclaration)

 {

 MethodDeclaration method =

 ((MethodDeclaration)neighbourClassNode);

 RemoveAttribute(method, typeof(MethodMerge));

 }

 }

163

 }

 }

 }

 }

 }

 }

}

