
Hyper/Net: MDSOC support for .NET
Tiago Delgado Dias

Brisa Auto-estradas, S.A.
Ed. CCO, Quinta da Torre da Aguilha

2785-599 São Domingos de Rana, Portugal

tdias@ptsoft.net

ABSTRACT

Multidimensional separation of concerns (MDSOC) is an

approach to analysis, design and code artifact modularization.

Instead of prioritizing a dimension of the modularization, as is

done in Aspect Oriented Programming, with MDSOC all

dimensions are equal. MDSOC also promotes traceability

throughout artifacts (from analysis to code).

We present a basic MDSOC implementation model using .NET

2.0 Partial Types. We further extend such model to support the

composition of methods, in a way similar to Hyper/J, introducing

our own prototype, Hyper/Net. Additionally a multidimensional

approach for unit testing is presented due to the particularities of

unit test artifacts.

1998 ACM Computing Classification System: D.2.3, D.2.13,

D.3.3.

Keywords

Multidimensional separation of concerns, partial types, .NET,

multidimensional unit testing, composition.

1. INTRODUCTION
Nowadays Object Oriented Programming is the most common

paradigm for software development, especially in large projects,

namely for product lines. Other paradigms like functional

programming or logic programming are more common in specific

niches. Also common in specific niches are Domain Specific

Languages (DSLs), especially due to faster time-to-market for

well defined types of problem and for the availability of RAD

(rapid application development) tools for these DSLs.

Object oriented programming, or OOP for short, is centered on

the class element. Classes usually abstract a physical entity or a

concept and relate to each other just like the corresponding

entities do. A similar approach, even though more limited, is

taken when modeling databases where tables abstract the same

concepts as classes do1.

While classes are the central element in OOP, it’s only due to the

proven results of the modularization approaches used to define

such classes that OOP made its’ way to the current, easily

observed, widespread. One developer can create a class,

implement its’ methods and offer it’s functionality at a higher

level, relative to the implementation. By composing such levels

on top of each other it’s possible to offer a very high level of

abstraction where some of these methods can map directly to

requirements that gave origin to the software development in the

1 And thus are prone to mapping from one to another.

first place. Furthermore, through interface definitions (either the

OOP native to the language or, for example, defined in a WSDL

to be used in a Web Service), it is possible to map a definition of

functionality to several different implementations, eventually

interchangeable and potentially developed separately.

Even though, the same early adopters of OOP, now supporting

their product lines on this technology, are facing several

challenges and looking for solutions. While development from

scratch with objects2 can run smoothly and be easily maintained,

as soon as we need to integrate such development with other

systems not initially predicted or add new functionalities to it,

issues start to arise.

We support that this happens because the software is initially

developed to be optimally organized for its’ purpose, eventually

leaving room for a few predicted improvements. As practice

dictates new features are usually not predicted nor expected and

thus require being implemented throughout several classes that

had once been thoroughly organized and separated from each

other. This has two major negative effects: it scatters the code for

the new features in the original implementation and tangles

unrelated code in the original class implementations. As a result

the addition of features becomes time-consuming and eventually

risky3, but, much worse, contributes to the lowering of quality of

the original code, leading way for a cycle of code degradation and

complexification as time (and enhancements) go by.

Refactoring provides some answers for problems emerging by the

previously highlighted reasons, but this is while there is a possible

object representation that is able to separate additional features

from each other.

While refactoring was becoming more popular in the mid’

nineties, another approach, Subject-Oriented Programming [6]

was being proposed as a solution for exactly the problem stated.

Subject-oriented programming is an approach based on OOP that

proposes that classes are not implemented regarding a real-world

entity, but instead capture only a partial view of that entity,

relative to a subjective point of view (the subject, for example

how a prey sees a fish). These partial views are then composed in

order for subjects to cooperate; for example, when modeling the

fish, even though knowing the fish is sleeping might not be the

concern of a prey, it could be important to know the fish is

2 Although classes are the main element of OOP we usually refer

to objects, its’ instantiations. This might be due to the fact that

there are usually several orders of magnitude more objects than

classes in a running piece of OOP software.

3 Even though, risk can be minimized by the utilization of

adequate unit tests and the deployment of a wider test driven

development platform.

sleeping when implementing the prey subject, as the fish is unable

to eat preys at that point, thus a subject containing the sleeping

behavior should be composed with the prey subject of the fish.

A few years latter Gregor Kickzales, et al. were proposing yet

another solution (Aspect-Oriented Programming, or AOP [7]) for

the problem at hand, this time rolling out a working

implementation (for Java) of the concept introduced: Aspect/J [8].

Aspect-oriented programming acknowledges the ubiquity of

cross-cutting concerns as the most significant barrier to obtaining

better results with OOP. Cross-cutting concerns are just like

features that need to be implemented in more than one object in

an existing implementation, typical examples are logging and

authentication.

AOP encapsulates cross-cutting concerns in modules called

aspects which contain themselves the operations that would be

scattered throughout the code. AOP refers to these operations as

advice. To apply such operations to the sections of the original

OOP code where they would need to be placed AOP introduces

the concept of pointcut, which defines exactly that, where the

operations (advice) should be applied. Implementations like [8]

use this information to create basic OOP code in a process called

weaving, where aspects are mingled with the original OOP code,

giving origin to tangled code which will be only seen by the

compiler.

Along the line of analogy of OOP with database structures we can

see aspects as triggers on databases, defining additional

functionality without mixing it directly in tables (objects).

Naturally the database trigger model is usually very limited,

occurring at a much lower level than aspects.

Another approach to solving the problem presented is

Multidimensional Separation of Concerns (MDSOC). It’s based

on work from subject-oriented programming and was first

proposed in [1] by the authors of subject-oriented programming

among others. MDSOC instantiates some of the concepts

presented by subject-oriented programming but overall defines a

more complete platform with new concepts. Namely different

subjects regarding the same concern (for example the same

feature) are brought together in grouping elements, hyperslices,

which are autonomous modules. Hyperslices are then composed,

just like subjects, into hypermodules which can be combined and

interact to create software products.

Hyperslices and hypermodules inhabit hyperspace, an N-

dimensional space where each dimension is divided in discrete

and disjoint sections: concerns, instantiated as hyperslices.

Common dimensions are objects, features, security, aspects; each

dimension can be supported on its’ own artifacts (objects, aspects,

functions, etc.). Having more than one dimension enables

capturing new software features, and more generally all

evolutionary elements [2], in the artifacts chosen and each

separated in its’ own hyperslice/concern for the dimension, thus

not dependent upon each other.

It’s also possible to use only one kind of artifact and even then

have multiple dimensions; such provides a solution for software

evolution with OOP that doesn’t require using additional artifacts

or abstractions. This is the scenario supported by Hyper/J, an

MDSOC implementation for Java [5].

Our focus on the remainder of this paper will be on MDSOC,

starting with an overview in Section 2. Section 3 presents .NET’s

partial types which support our initial approach to MDSOC on

this platform. Section 4 presents a classic example of MDSOC

based software development using only partial types. Section 5

discusses the limitations of partial types for MDSOC support.

Section 6 introduces Hyper/Net, our tool, which extends partial

types for further MDSOC support. Section 7 exemplifies further

implementations to the example from Section 4, impossible with

the basic support from partial types. Section 8 focuses on the

current Hyper/Net limitations and future work branching from our

approach. Section 9 quickly spans related work, leading way to

the conclusion in Section 10.

2. MULTIDIMENSIONAL SEPARATION

OF CONCERNS (MDSOC)
In the early stages of software development several constructs

exist to capture the ambit and properties necessary: requirements,

use cases, functional specifications, etc. These constructs have in

common the fact of capturing a piece of the problem, thus are

serving to decompose the problem into smaller ones. Pieces

regarding similar problems are usually grouped as in UML

packages, viewpoints, etc. In MDSOC, concerns are generic

grouping elements and can be mapped to any of these or other

existing grouping elements. Thus the granularity of concerns

varies but in most MDSOC approaches concerns tend to be

generic.

Each concern in MDSOC exists in the context of a dimension.

Dimensions are more general aggregators. Common approaches,

like OOP, evolve in only one given dimension, namely the object

dimension. Aspect-oriented programming or other approaches can

add another dimension to the concern space, but these work as a

complement to the object dimension which is still at the core,

namely in AOP, the aspectual dimension is complementary. This

limitation is referred to in [1] [2] [3] [4] [5] as “tyranny of the

dominant decomposition”. In order to break such tyranny, in

MDSOC the number of dimensions is virtually limitless and can

embody different kinds of artifacts, namely different programming

languages.

Concerns discretely populate a dimension in such a way that no

two concerns overlap in the same dimension, in other words a

specific dimension doesn’t have any cross-cutting concerns

regarding itself. Overlapping concerns may exist in between

dimensions, but such cross-cutting is already sliced at the

dimension level. Concerns are composed of artifacts

(instantiations) or units, for example objects, these can span

several concerns in different dimensions but never in the same

dimension.

The space defined by

the dimensions

identified is referred to

as the hyperspace or,

sometimes, concern

space. In order for

units to implement a

specific concern in a

given dimension, units

regarding that concern

Dimension 2

Dimension N

Hypermodule

Dimension 1

Hyperslices Concerns

Figure 1. An hyperspace

representation.

must be combined in an independent module, this is called a

hyperslice. As units can be cross-cutting it is necessary to

decompose each of these units and only include in the hyperslice

the component that is related with the concern in question. Unit

decomposition is done during hyperspace definition, this can

either be done on existing software or be part of the development

process itself.

Hyperslices usually offer very specific functionality and are of

limited standalone usage. To regain power hyperslices are

composed into hypermodules by using rules on how the

components of each hyperslice integrate with each other, these are

called composition rules. Hypermodules can cross-cut several

dimensions, as can be seen in Figure 1, and can also be composed

with and on top of on each other to attain complete software

systems.

By organizing our hyperspace in concerns and dimensions the

MDSOC approach can be applied from the first software analysis

stages to the actual implementation, dealing with the native

artifacts at each level of Software Engineering. Furthermore,

artifacts at each level are organized in the same concerns and

dimensions, thus mapping from one level to the other becomes

trivial and direct, thus promoting traceability. There are

approaches with similar aims for AOP, namely [11], but these

require the introduction of new artifacts to the analysis stages

(namely the concept of aspect) while MDSOC relies solely on

existing native artifacts.

Nevertheless, our work with MDSOC is limited to the

programming/code level, so, next, we present our initial approach

based on partial types, a .NET language construct.

3. MDSOC WITH PARTIAL TYPES
As part of new language features Microsoft introduced partial

types with the C# and VB.Net 2.0 language definitions. Both

languages were created for use with the .NET framework which

was deeply based on the Java environment. Currently .NET has

gained its’ position just like the Java environment, each with its’

own worldwide community of adopting programmers and each

undergoing thriving evolution.

Partial types use a class modifier construct (partial) that

enables separating class definitions throughout as many files as

desired. Figures 2 and 3 exemplify the usage of partial types to

implement different methods for the same class in separate files.

partial class Fish {

public void Eat(IEdible food) { ... }

}

Figure 2. Declaration of the partial class Fish in File1.

partial class Fish {

public void Sleep(int minutes) { ... }

}

Figure 3. Declaration of the partial class Fish in File2.

A common usage for this feature is separating tool-generated code

from human-generated code for the same class, enabling easy

regeneration of the tool-generated code without ruining the

human-generated portion of the class.

Here we explore the usability of partial types to organize code by

adopting the multidimensional separation of concerns (MDSOC)

approach.

Throughout this paper we will consider hyperspace units at the

class/object level. As seen in the previous section the first step in

applying MDSOC is defining the hyperspace. First off dimensions

and concerns are determined; notice that these can easily be

extended afterwards as new additions are trivial. To populate the

dimensions existing units must be decomposed or new units must

be created, with declarations scattered in the concerns that are

focused by the unit.

We achieve unit decomposition by separating class declarations in

different files, each containing a partial class definition. To

organize our hyperspace we use a very simple approach available

to any programmer; having defined our dimensions and the

concerns in each, we create a directory structure where each

dimension has a root directory and inside is one directory per

concern. Files pertaining to a concern are simply placed inside the

concern directory. Additionally we can add comments or

attributes to the code in order to identify the concern. We cannot

use namespaces to map each partial class implementation to a

concern, as Hyper/J can, simply because partial types require each

partial class declaration to be in the same namespace.

Notice that in our model the source code is manipulated while

decomposed, offering the programmer full MDSOC support as

soon as decomposition is done. When using Hyper/J to apply

MDSOC to existing Java code it won’t output the modularized

code but requires managing the abstract code model defined in the

hyperspace declaration file against the original scattered and

tangled code. When working originally with MDSOC in Hyper/J

the source should be organized by concern and the MDSOC

model is then manipulated directly by the developer. The same

happens with our approach, but for us, applying this model for

developing from scratch or to an existing piece of software results

in exactly the same multi-dimensionally organized code.

The second stage in implementing MDSOC, composition, is

automatically provided in our approach, being supported by the

compiler itself. Partial classes are brought together into a single

piece which holds the entire class implementation in the compiled

code. Composition is done by class name and doesn’t support any

merge, override or other advanced composition mechanisms.

Support for such mechanisms is added by our tool (Hyper/Net)

and is described latter on.

4. THE EXPRESSION SEE
As an experiment of the proposed model we implemented a

classical example that accompanies MDSOC in [1] [3] [4] and

comes as demo with Hyper/J [5].

The expression software engineering environment (SEE) is a

simple OOP implementation of mathematical expressions with

numbers, operators (+, - and assignment) and variables. It

supports such features as printing expressions, evaluating an

expression value and checking the syntax of an expression.

This hyperspace will have only two dimensions, the object

dimension and the feature dimension which we will be working

at. The object dimension is created by default in Hyper/J, usually

we only work at the level of the other dimensions, Hyper/J also

introduces concepts as “None” concerns in each dimension where

units regarding no existing concern in the dimension are placed,

we have discarded these in our approach.

First of we created a directory for a Kernel concern, the kernel

concern is a basis concern where we declare each class and offer

basic functionality: constructors, related private variables and

eventually get/set methods (but we have none). We use the Kernel

concern to organize our class hierarchy and do so in the following

way:

� An Expression is an abstract super-class for all the other

classes.

� Binary operators share commonalities captured in a class of

their own (BinaryOperator) which derives from Expression.

Sub-classes of this are Plus, Minus and Assignment.

� Number and Variable extend Expression with the expected

functionality.

� There is an additional Test class implementing unit tests for

each concern. Namely testing object construction for the

Kernel concern.

All the classes declared in the Kernel directory (concern) are

defined as partial classes so we can further enrich them for other

concerns.

Another concern (Display) focuses on printing expressions on the

screen, so, in another directory of the Feature dimension (root

directory) we have the previous classes with only the

implementation of a Display() method. This method simply

prints on the screen a representation for the object, for example

the Number object prints the integer value with which it was

initialized. We verify here that elements from the Kernel concern

are required for this concern; the typical approach followed in

Hyper/J would propose the declaration of stub methods/variables

for each of the elements required from other hyperslices, that

latter would be composed (in an hypermodule) with the real

elements. Here we use the variables from the other concern

directly; this approach is discussed in the next section where a

better solution is proposed.

The display hyperslice also contains the definition of unit tests

regarding the display method. Testing here is not a concern by the

definition presented, if it was it should be factorized into its’ own

directory, isolated from each of the other concerns implemented.

By placing separate unit tests in each hyperslice we are optimizing

the system for mix-and-match operations4, retaining the full test

driven development capabilities. Such mix-and-match operations

can easily be done by adding the directory of a concern as part of

the project for compilation or removing it. For example, we can

easily produce a version of the Expression software without

display capabilities by removing the Display directory (one click

functionality in.NET IDEs5) and compiling a new version of the

project. Notice that unit tests for the feature remove are also

4 Namely removing concerns and adding new ones as required, to

produce different flavors of the Expression software product.

5 Microsoft’s Visual Studio is the most common IDE for the .NET

platform, but for this project we used an open source IDE:

SharpDevelop, available at http://www.sharpdevelop.net/.

removed, if Testing was implemented as a concern we would have

to remove manually tests for the removed concern in order to be

able to compile the project.

The Evaluation and Check concerns are implemented much in the

same way as the Display concern, each adding a new method to

the classes (Eval() and Check() respectively). Not every

class has a partial implementation in each concern, for example

the check functionality of binary operators is implemented in the

parent class and inherited by all three child classes.

[1] proposes an extension to the Expression SEE that consists in

adding a Style checking concern. This new concern should offer

its’ functionality through the Check() method introduced in the

Check concern. This would enable existing code that uses

expression checking to do style checking without needing to be

changed. Here we find a major limitation in our initial model, if

we declare another partial class for any of the implemented classes

offering another implementation for the Check method the

compiler will detect a syntax error as the Check method is defined

twice (remember that each partial class is composed in a unique

class additively for all elements declared in the partial

declarations). We will analyze this and other limitations in the

following section.

The sample code for this example is available for download from

http://ptsoft.net/tdd/.

5. PARTIAL TYPE LIMITATIONS
In our partial type approach, elements of a class declared in a

specific concern are available throughout the remaining

declarations of the same class for all other concerns6. This will

require special care from the programmer, once an element from

another concern is referenced a tight bound has been introduced

and changes to the element become cross-cutting (having to

change the way it’s referenced).

This happens because hyperslices with partial types are not

declaratively complete as proposed in [3] and supported in

Hyper/J. Declarative completeness means that a hyperslice is not

dependent on other hyperslices, with Hyper/J this usually means

that a hyperslice contains abstract class declarations which hold

abstract declarations for elements not internally provided. The

hypermodule then requires a composition rule to override the

abstract element declarations with real-ones provided by other

hyperslices.

In both approaches when an element in a concern that is used by

other concerns changes, these changes must be propagated. In the

case of Hyper/J and its’ approach changes must at least be made

to the composition rules, if the change is serious enough the usage

in each other hyperslice must also be reviewed. With partial types

the usage from other hyperslices will always have to be reviewed

and there is no centralized information regarding such usage.

With the extensions provided by Hyper/Net, presented in the next

section, we can easily implement a similar approach to that of

Hyper/J.

6 When using a .NET 2.0 compliant IDE, the auto-completion

feature will suggest all class elements, even those that were

defined in a different partial class declaration.

We consider that neither approach is sufficiently satisfactory and

further investigation in this matter is required. The relations

between hyperslices could be stabilized in an interface, eventually

a public interface provided by each hyperslice, but the effects of

such are unpredicted and stabilization risks making changes to

hyperslices harder.

The last change examined in our example was impossible to

implement given the natural limitations of partial types. An

alternative would be to create a new method that explicitly

combined both functionalities of the different checks. This

method would have to replace the existing syntactic check calls in

software that required using both checks. The new method would

reference both kinds of checks explicitly and thus be dependent

on both. Hyper/J attains the desired transparent effect by

introducing elegant composition strategies that we have also

implemented in our Hyper/Net prototype described in the next

section.

6. EXTENSIONS FOR FULL MDSOC

SUPPORT
Our initial approach only enables the composition of classes in a

very specific way; still it can prove valuable, especially as no

additional software is required to apply such approach.

Hyper/Net builds on this initial work by providing explicit

composition constructs that elevate methods7 to MDSOC units,

instead of having only classes working as units.

At this point Hyper/Net’s composition constructs take the form of

.NET attributes, these can be applied to any program element

(class, interface, variable, etc.) but we only take into account

composition attributes for methods.

Hyper/Net supports three composition constructs found in

Hyper/J: override, merge and bracket. In Hyper/J, the first

two constructs define how elements are composed, override by

having one replace a set of others and merge by capturing the

functionality of each instance in a new ‘super-instance’. Bracket

enables inserting actions occurring before and after a specific

method, this construct is similar to AspectJ’s [8] after and

before advice and was already present in Hyper/J.

Overrides is the simplest composition construct, only one of the

conflicting methods can define this attribute and that the

remaining methods are simply removed.

 [MethodMerge(MethodMergeAction.Override)]

Figure 4. Syntax of the override composition attribute.

Both overrides and merge compositions are defined using the

MethodMerge attribute; that has to do with the common

implementation for both composition methods and should be

corrected in a non prototypical version.

Merge composition embodies existing method functionality as a

‘super-method’ that replaces the previous ones. This is done by

invoking each instance of the existing methods. At least one

7 The Hyper/Net prototype only supports the composition of

methods (other than constructors). We plan to extend support

for all other types of elements at the class level (variables,

properties, etc.).

conflicting method has to define a merge attribute for this

operation.

[MethodMerge(MethodMergeAction.Merge, <Priority>,

<MergeResultMethod>)]

Figure 5. Syntax of the merge composition attribute.

In merge compositions we additionally capture the functionality

of the order composition rule in Hyper/J with the priority

argument (which is optional8). The priority argument defines a

total order in which merged methods will be executed; it’s our

intent to offer a relative ordering feature in the future. We can also

define a method that will merge the results of each original

method invocation. Such method must be local in the class and

receives a list of result objects to return only one object of the

same type9.

public delegate object MethodMergeResult (params

object[] mergedResults);

Figure 6. The method result merger is a delegate handler.

The bracket constructor enables preceding the invocation of a

method with another method (before method) that receives its’

arguments and information about the original method. It also

enables (and requires in the current Hyper/Net implementation)

following methods with the invocation of another method. The

method invoked after the initial invocation (after method) receives

the same information as the before method along with the return

result of the intercepted method. The invoked methods must be

local to the class and implement the delegates depicted in Figure

8.

[MethodBracket(<Before method>, <After method>)]

Figure 7. Syntax of the bracket composition attribute.

public delegate void BeforeMethod(MethodBase

method, params object[] parameters);

public delegate object AfterMethod(MethodBase

method, object returnValue, params object[]

parameters);

Figure 8. Before and after methods are delegate handlers.

Contrary to Hyper/J, we do not define default merging actions as

we rely on the fixed merging of partial types, we think this might

prove simpler and more intuitive to use for the programmer.

Hyper/Net works as a pre-compilation tool that processes source

code. Both C# and VB.Net are supported at this point. Hyper/Net

receives as input a project file and reads the source code used for

compilation of the project10. The source-code is pre-processed in

order to merge all the files into one, this is done by moving all

using/import directives to the beginning of the code. Then

8 When the priority is not defined, methods will have a default

priority of -1.

9 Type checking for these methods is done only at runtime; it

should be done as part of Hyper/Net.

10 MSBuild project files are like buildfiles, written in XML,

containing, among much more, information regarding the

source-code files that need to be compiled to produce binary

output.

Hyper/Net uses the parser implemented by NRefactory11 to

produce an AST (abstract syntax tree) for the code.

Following the initial processing stages there is a composition

preparation stage. It’s in this stage that partial types are merged

into a single type declaration, but before there is a similar merge

that is done with namespaces; bring all common namespace

entries below the same namespace node. Partial types are fully

merged: merging inheritance and interface implementations,

attribute declarations and, of course, all of the scattered12 element

declarations (this is purely additive, the composition is done in the

next step).

The final stages of Hyper/Net processing are the core of our work.

Merge and override composition is done in the same step. The

AST is visited once again, this time searching for repeated

instances of the same method; at this point matching names are

considered to be the same method, real matching should be done

by comparing method signatures also. Remember that scattered

methods have already been brought under the same tree elements

in the AST by the previous steps. At this point, matching methods

are searched for attributes in order to determine the correct course

of action. If one (and only one) of the methods has an override

attribute the remaining methods are removed, otherwise the

methods must define merge composition. Merge composition

consists in renaming the existing methods and creating a new

‘super-method’ that will call each one of the previous. The

priorities defined are used for ordering the invocation of each

method, the result of each invocation is kept in a local variable. At

the end of the invocation process an optional result merging

method is invoked, this method, which must be defined as a local

class method, takes as arguments a list of results and returns only

one, which in turn is returned by the ‘super-method’.

Bracketing searches directly for bracket attributes in methods.

Once found a statement that gets the original method meta-

information (populates a System.Reflection.MethodBase object)

is injected at the beginning of the original method. Following the

before method is invoked receiving the method meta-information

and the original method arguments. Finally the existing return

statement is replaced by the population of a result variable using

the returned expression and the after method is injected replacing

the existing return and receiving the original result along with the

same arguments provided to the before method.

Finally Hyper/Net outputs the composed code in the language of

choice (either C# or VB.Net), as a single source file that can then

be compiled.

Hyper/Net has been implemented itself using the partial type

MDSOC approach presented earlier. Furthermore Hyper/Net

doesn’t require a 2.0 compiler because the partial types defined in

source code are processed internally after parsing in order to

facilitate the composition phases. As a result even though partial

types are used in Hyper/Net’s MDSOC source code the compiler

11 NRefactory is, at the time of writing, an undocumented project

from the SharpDevelop development team.

12 Please note that these are scattered only from the object

dimension point of view, thus our intention to discard such

dimension in our analysis.

used with the resulting code needs not be aware of these partial

classes and thus can be a version 1.x compiler.

Hyper/Net supports multiple compositions for each element as

attributes are kept and propagated from composition to

composition, namely automatically introduced methods retain the

attributes of their originators.

7. REVISITING THE EXPRESSION SEE
We’ll now get back to the Expression SEE example in order to

put Hyper/Net to work at extending the existing features.

Getting back to the style check feature we were unable to

introduce with only partial types, we now can introduce it easily.

We simply created a new concern/hyperslice (StyleCheck) in

which we provided partial implementations for the Check()

method. As a simplification to the original feature introduced in a

demo with Hyper/J, our style check simply checks the name of

variable elements so these are smaller than 5 characters. This way

our concern would only require a default implementation for

expression, returning true, an implementation for the binary

operator making sure each side expression is correct and finally

the implementation for the variable. Additionally unit tests should

Each of these methods has a MethodMerge attribute

declaration applied to it. The action defines the merge as the

method merge action, a priority level inferior to the default merge

priority which is the one of the syntactic check and a method that

receives the two results and returns true if both are true.

[MethodMerge(MethodMergeAction.Merge, -10,

“mergeCheckResult”)]

Figure 9. Attribute declaration for merging the check feature.

Going back to the syntax check feature in Section 4. we can recall

that in this dimension check was additionally implemented for the

assignment and number classes. We haven’t defined explicitly a

check method for these classes in the style check concern; instead

we rely on inherited functionality from the expression class. When

partial classes are brought together there is a side effect of the

fixed merging of partial types, the methods defined in the

syntactic check concern for the number and assignment classes

override the default merged implementation for the expression

class. This requires us to declare explicitly the default

functionality for both classes in the style check concern and the

merging attribute. This should be unnecessary and the

continuation of this research should provide an elegant solution

for this problem.

During the implementation of the new features we used unit

testing to validate the correctness of the resulting code. While

adding the style check feature we had to add another initialization

method for the test class, now the tool13 we are using for unit

testing supports only one initialization method for each test class.

We didn’t have to change our code to support this limitation; we

simply added a merge attribute to the initialization method on the

second test class it was defined, this was transparent for both the

programmer and for the unit testing tool.

13 We used NUnit (www.nunit.org) for unit tests. NUnit is already

integrated in the SharpDevelop IDE.

Our approach to unit testing in MDSOC is to implement local unit

tests in each hyperslice. The functionality tested is the local

functionality of the hyperslice, when composition occurs

functionality can change, we have verified this when introducing

the style check feature. The style check test allows for assignment

of two binary operator expressions, which is not allowed by the

syntactic check. The style check concern tests expect a valid result

when combining such two binary operators by assignment; the

syntactic check tests expect an invalid result for the same

expression. When run separately (by removing the other check

feature by mix-and-match) all unit tests pass, when run with the

two features coexisting the style check test for the binary operator

fails as the functionality being tests is now the combined

functionality of both checks. First of all unit tests should be able

to run on independent hyperslices and support for that should be

provided by the IDE environment itself, manually we can remove

unwanted hyperslices so we can test other in isolation. Then, in

order to test combined functionality, tests should be composed.

Composition for this purpose most likely should target lower level

units inside methods. Multidimensional unit testing, due to its’

particularities, is definitely a field for future research.

We also implemented a simpler logging mechanism than the one

proposed in [4], this time we used bracketing. A new hyperslice

was introduced (Logging), this hyperslice only contains a partial

class definition for Expression. Two new methods are introduced:

LogMethodEntry() and LogMethodReturn(). These

methods become available to all other classes through inheritance

and so we can now add logging to any method by adding the

attribute in Figure 10. Each method is kept as a local delegate

instance for valid type-checking when processing the attribute.

[MethodBracket(LogMethodEntry, LogMethodReturn)]

Figure 9. Attribute declaration for the logging feature.

Declarative completeness can now be attained by declaring stub

methods local to each hyperslice, and then overridden by

respective methods in a different hyperslice. This way we can

remove cross-cutting references from our hyperspace, even

though, as stated previously we would like to find a better

approach.

Another feature proposed for this SEE in [3] is caching, each

expression would cache the result of evaluation for future usage;

cache invalidation would also be an issue for this concern. This

could easily be attained if the Eval() method was bracketed

with methods such that the cache contents were tested to check if

these we usable, if so instead of evaluating the expression this

result as returned. This could be done as a simple enhancement to

Hyper/Net’s bracket attribute to provide around functionality.

The sample code for this example is also available for download

from http://ptsoft.net/tdd/, along with a prototype version of

Hyper/Net.

8. FUTURE WORK
Several concerns for future work have already been identified

throughout this paper. We now focus some of these and present

the more ambitious areas for future research.

Hyper/Net still has a long way to go in terms of composition

expressibility. Extensions to the present constructs are required; a

few have already been pointed out in this paper, an important one

that remained unmentioned is the support for pattern matching or

similar functionality for the bracket construct. Units for

composition need to be generalized from methods to other class

elements and then drill down inside method implementations.

AspectJ’s approach can provide important experience in this field;

we have already identified several semantic similarities.

Multidimensional unit testing has already been identified as a very

interesting field for future research, eventually to be extended to

the entire test driven development universe.

In Hyper/Net composition rules are distributed/scattered. This is

not necessarily bad; composition information can be precious

when present at each hyperslice. But naturally there should be a

centralized way of manipulating the compositions, for such we

propose, instead of a centralized meta-data base (like Hyper/J’s

concern mapping files), an hyperspace management tool that

operates by merging the distributed definitions. Such a tool could

be part of the development of IDE support tools for Hyper/Net.

Another interesting IDE enhancement would be a tool that

enables programming directly by viewing a specific dimension of

the hyperspace, for example, when adding new objects we should

be viewing from the perspective of the Object dimension, not the

Feature dimension. We could then use our Hyperspace

management tool to define meta-data for the newly added

artifacts. If we were coming from an upper level process (with a

design in hand) we could have that automatically done for us, just

like class signatures are. The programmer should be able to view

his code from different perspectives, further being able to program

using those perspectives.

A limitation of Hyper/Net that is common to Hyper/J is the

necessity of recompiling code in order to add new concerns (or

even dimensions). The possibility of redefining the concern space

without recompilation was proposed in [6]. In previous

(unpublished) work we have used an event and hook based system

that enables plugging in new components that use these events or

hook without the necessity of recompilation. Such approaches

might serve as a basis for adopting plug-and-play edition

functionality to Hyper/Net.

Also based on the work from [6] we find it uninteresting to limit

the output of our MDSOC approach, in the case of developing

software that offers programmable interfaces (APIs), to generating

an agglomerated version of the composed concern-space. Instead

we propose an additional step, after composition, which will

create a set of interfaces for each class, each comprising the public

functionality of the class for a given concern. This might be an

instantiation of the subjective views of [6]. The usage of such

interfaces should be further studied, namely its’ mapping to

documentation, keeping the MDSOC approach available all the

way through the development process (documentation included).

As can be seen, the example adapted from earlier work on

MDSOC (and the most important to date) contains only one

dimension. Other dimensions could easily emerge if logging had

to be more specialized or by adding new cross-cutting

requirements. Managing the multidimensional space becomes

more critical as more dimensions are added, and here we

(humans) may have a particular limitation inherent to the basis of

the approach. Human comprehensibility of a number of

dimensions greater than 3 is usually limited. In MDSOC we’re not

usually required to consider the full dimension set at once, but

there may be situations which require agile multidimensional

thinking, namely when defining ways to organize an hyperspace,

this might explain why most examples of MDSOC are not rich in

terms of dimensions.

9. RELATED WORK
Hyper/J [5] has been available for download from IBM since

2000. We’ve already presented several Hyper/Net comparisons

with it, noticing that Hyper/Net is not nearly as mature and is still

much more limited. We’ve also verified this is not the case when

it comes to decompose existing code as we are able to attain with

Hyper/Net the same result as if the code had been initially

developed with Hyper/Net support. At this point Hyper/Net still

presents serious limitations regarding traceability for compilation

errors and debugging; both will be shown relative to the generated

code instead. Hyper/J is capable of manipulating pre-compiled

code while Hyper/Net isn’t, simply because Hyper/J operates at

the byte-code level while Hyper/Net at the source-code level.

Interestingly, right after the first version of our prototype had been

finished, we had access to [10] which describes in detail

HyperC#, an MDSOC prototype implementation for C#. [10]

considers MDSOC as part of AOP, we don’t agree with such

classification. HyperC# gathers meta-data through a GUI

(graphical interface) where a class is defined manually. This GUI

introduces interesting visualization of a class and might provide

very useful if integrated in an IDE. HyperC# also works at the

source-code level by means of a parser, just like Hyper/Net. After

class declaration, the decomposition stage starts, this is also done

in a GUI which has two sections, one where dimensions and

concerns are managed and another listing the classes methods.

The methods and constructors can then be moved into concerns,

rendering these as the only units of composition. The same GUI

provides functionality to define a default composition action (like

Hyper/J) and insert specific composition rules using an equates

construct (equivalent to Hyper/Net’s merge) and a bracket

construct (like Hyper/Net’s). While these constructs already

provide method signature support unlike Hyper/Net no additional

feature support (like ordering or result merging) is provided.

HyperC# is limited to hyperspaces of one class file at a time, this

limits very much its’ current usage scenarios. Only the C#

language is supported, there exists a previous work from common

authors that implements support in VB.Net.

AOP [7] [8] is closely related with MDSOC and, as already

proposed might provide an interesting source of experience for

MDSOC works, especially in the field of composition rules.

Aspects can also be used as artifacts and be an active unit in an

MDSOC hyperspace, further investigation into such usage is

required.

Step-wise refinement [9] is an approach with a lot in common

with MDSOC; it works by incrementally adding features to

existing simple programs.

10. SUMMARY
We have started with an approach to MDSOC based on a simple

and native artifact in both the C# and VB.Net 2.0 languages:

partial types. We described our approach, presented a full

example for it and discussed its’ limitations. Some of these were

addressed by our prototype implementation, Hyper/Net, of

extensions for full MDSOC support in these languages.

Hyper/Net’s functionality was described; three composition

constructs materialized as programming attributes: overriding,

merging and bracketing. Hyper/Net’s architecture and

implementation was described. The initial example, left

unfinished with the partial type’s limited version, was extended

with new features, meanwhile exposing some of Hyper/Net’s

limitations.

For both examples we used unit testing to verify the correct result

of our work and identified particularities with unit test artifacts in

a multidimensional environment. A new paradigm,

multidimensional unit testing, was proposed by defining a few

simple rules that we applied with success.

All the areas covered here have serious future work still to be

done, we focused some of it. We also compared our approach to

the few existing similar ones.

11. REFERENCES
[1] P. Tarr, H. Ossher, W. Harrison, S.M. Sutton, "N Degrees of

Separation: Multi-Dimensional Separation of Concerns".

Proceedings of the International Conference on Software

Engineering, pp. 107-119, May 1999.

[2] Ossher, H., Tarr, P., “Using multidimensional separation of

concerns to (re)shape evolving software”. Communications

of the ACM 44, pp. 43-50, 2001.

[3] Harold Ossher and Peri Tarr, “Multi-dimensional separation

of concerns in hyperspace”. Technical Report RC

21452(96717)16APR99, IBM Thomas J. Watson Research

Center, Yorktown Heights, NY., 1999.

[4] H. Ossher and P. Tarr, “Multi-Dimensional Separation of

Concerns and The Hyperspace Approach”. In Proc. of the

Symposium on Software Architectures and Component

Technology: The State of the Art in Software Development,

2000.

[5] P Tarr, H. Ossher, "Hyper/J User and Installation Manual".

IBM Corporation, 2001.

http://www.research.ibm.com/hyperspace.

[6] William Harrison and Harold Ossher, “Subject-oriented

programming: a critique of pure objects”. In Proceedings of

the eighth annual conference on Object-oriented

programming systems, languages, and applications, pages

411--428. ACM Press, 1993.

[7] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Videira Lopes, C., Loingtier, J.-M., and Irwin, J. “Aspect-

Oriented Programming”. In Proc. of ECOOP, Springer-

Verlag, 1997.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold, “An overview of AspectJ”. In

Proceedings of the 15th European Conference on

ObjectOriented Programming, pp. 327-353. Springer-Verlag,

2001.

[9] D. Batory, J. Liu, J.N. Sarvela, "Refinements and Multi-

Dimensional Separation of Concerns". ACM SIGSOFT

2003.

[10] Angela Hantelmann, Cui Zhang, “Adding Aspect-Oreinted

Programming Features to C#.NET by using

Multidimensional Seperation of Concerns (MDSOC)

Approach”, in Journal of Object Technology, vol. 5 no. 4,

pp. 59-89, May-June 2006.

http://www.jot.fm/issues/issue_2006_05/article1

[11] Awais Rashid, Ana Moreira, and João Arajo,

"Modularization and Composition of Aspectual

Requirements". 2nd International Conference on Aspect-

Oriented Software Development, Boston, Massachusetts,

March 2003.

